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Abstract

I quantify the economic impact of international trade in waste. I build a structural
gravity model in which waste is a byproduct of manufacturing and an input to
recycling while waste flows are governed by both comparative advantage and the
pollution haven effect. Although existing patterns of waste trade make countries of
all income levels better off, low-value waste trade makes middle-income countries
worse off. China’s 2018 ban on low-value waste imports made China and several
lower-income countries better off. The economic loss in lower-income countries due
to low-value waste trade is attributed to the pollution haven effect.
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International trade in waste has experienced considerable growth over the past three
decades. Notably, waste trade saw a five-fold increase in volume from 34 million tons in
1988 to 157 million tons in 2015. Despite countries’ active participation, waste trade is
highly contentious as its economic and environmental ramifications on all trading part-
ners are unclear. While waste trade can create negative externalities locally in importing
countries via the health and environmental hazards posed by disposal of the nonrecyclable
portion of waste (Kirby, 1994), it also creates benefits similar to regular trade like cheaper
recycled materials, which can be used in manufacturing production, increased employ-
ment opportunities, and additional income. The environmental considerations have led
countries to impose a range of controls on waste trade, from multilateral agreements, such
as the Basel Convention in 1992, to the unilateral ban on imports of select waste types
by China in 2018. Recent work by Li and Takeuchi (2021); Unfried and Wang (2022),
Shi and Zhang (2022), and Sigman and Strowe (2024) quantifies the environmental costs
of China’s 2018 ban through the impact on air pollution and waste-management. How-
ever, a full assessment of the impact of waste trade and the associated regulations is only
possible through a quantification of their gross economic benefits, which then facilitates
a comparison with the environmental costs of waste trade.

I quantify the economic benefits of international trade in waste across countries. To
this end, I extend the Ricardian model of trade by Eaton and Kortum (2002) by adding
the generation of waste as a byproduct of manufacturing, whereafter waste itself is input
to recycling. In the presence of negative externalities, both comparative advantage, due to
technological differences, and the pollution haven effect, due to differences in environmen-
tal regulations, govern the direction of waste flows across countries. I assess heterogeneity
in economic gains by waste type by allowing differences in abilities of countries to gen-
erate and reprocess two kinds of waste—high-value and low-value waste. Rich countries
like the US, which are technologically superior, specialize in high-value waste like metals.
In contrast, lower-income countries like India, with abundant cheap labor, specialize in
low-value waste, comprising a mix of materials like plastics that require manual sorting.

My model also captures the pollution haven effect in relative flows of the two types
of waste. Specifically, I capture the empirical fact that richer countries, which are also
high environmental regulation countries, import a larger share of high-value waste than
low-value waste by formulating non-homothetic production in a country’s recycling sector
that uses both types of waste to produce a recycled good. To my knowledge, mine is the
first paper to formulate a structural gravity framework providing microfoundations for
waste generation and waste flows as well as quantifying its economic effects.

The size of gains to trade hinges on the elasticity of the trade flows with respect to
trade barriers. A challenge in estimating the model parameters in a structural gravity
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framework is disentangling the effect of trade elasticities from that of trade costs. In
my framework, the simultaneous estimation of the parameters for the two waste sectors
and manufactured goods presents an additional challenge. My solution is to perform
the estimation sequentially. I first estimate the trade elasticities using model predictions
to construct an economic measure of trade barriers for which the geographic barrier
variables serve as instruments. Then, I estimate the rest of the key parameters of the
model, including trade costs, by simulating the world economy. I use cross-sectional trade
data on manufactured goods, high-value waste, and low-value waste that represents over
90% of world trade for the estimation. I find that low-value waste is more sensitive to
trade barriers than high-value waste and manufactured goods. Specifically, a 1% decrease
in trade costs causes a 7.3% increase in manufactured goods and high-value waste, and a
9.8% increase in low-value waste flows. To my knowledge, mine is also the first paper to
provide estimates of the trade elasticities for international waste flows.

Another contribution of my paper is to consider a variety of counterfactual simulations
to quantify the economic consequences of waste trade. The global gains to waste trade
comprise 0.43% of gains to all trade while waste trade accounts for 0.7% of overall trade
by value. Thus, per unit of trade value, waste trade generates only about 60% of the
gains of regular trade. Differentiating the gains to waste trade by income level, I find that
poor countries see the largest gains of 0.021% of GDP. Allowing trade in waste shifts the
demand by recycling sectors across countries from low-value waste to high-value waste
leading to a rise in the price of low-value waste relative to recycling. As lower-income
countries specialize in low-value waste, this income group of countries disproportionately
benefit from the price increase. While waste trade accounts for only a small portion of
global trade in commodities, its general equilibrium effects are non-negligible for certain
smaller-sized, developing economies.

I also study heterogeneity in gains by type of waste. While high-value waste trade
creates economic effects qualitatively similar to the overall waste trade, low-value waste
trade hurts middle-income countries. Allowing only low-value waste trade increases the
scale of generation of low-value waste while its relative price falls. This price decrease
makes middle-income countries, which specialize in low-value waste, worse off. Imposing
regulation akin to China’s 2018 import ban on select waste materials has effects quali-
tatively similar to a ban on all low-value waste trade. Like an overall low-value waste
trade ban, the scale of low-value waste generation declines, making lower-income coun-
tries better off. Not only does the policy serve the lower-income countries in aggregate,
but it also achieves its intended goal by increasing China’s gross benefits. This finding
supports the evidence in Sigman and Strowe (2024) that the Chinese policy resulted in
countries reducing low-value plastic waste exports not only to China but also to other
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lower income countries. The main qualitative conclusions in my paper are robust to con-
sidering alternative estimates of trade elasticities, recycled good as an intermediate input
to manufacturing, and a range of externality costs of waste disposal. On eliminating
the pollution haven effect, however, even low-value waste trade makes the lower-income
countries better off.

This paper contributes to studies on factors determining international trade in waste
by providing theoretical microfoundations for waste generation and international waste
flows. Papers in this line of research either use a reduced-form approach to test for
waste haven effects, where waste is relocated to lower environmental regulation countries
(Baggs, 2009; Kellenberg, 2012), or employ a Heckscher-Ohlin framework to conclude that
countries sufficiently abundant in land import more waste for landfilling (Copeland, 1991).
However, a major source of economic incentives to import waste is the demand for recycled
waste in local manufacturing production. Hence, in my framework, I abstract away from
land-filling while allowing demand for waste by a country to arise in its recycling sector
for “productive” reasons rather than for final disposal.

A limited literature studies the effects of waste trade regulations, such as the Basel
Convention (Kellenberg and Levinson, 2014) and China’s 2013 Operation Green Fence
rejecting highly contaminated waste imports (Sun, 2019; Balkevicius et al., 2020), on
international waste trade using the difference-in-differences approach. Recent work by Li
and Takeuchi (2021); Unfried and Wang (2022), Shi and Zhang (2022), and Sigman and
Strowe (2024) studies the more local impacts of China’s 2018 ban on air pollution and
waste-management. My use of a structural framework allows me to incorporate general
equilibrium forces, to consider a richer set of counterfactuals, and to explicitly quantify
economic gains, all of which is infeasible with a reduced-form framework. I also contribute
to the literature on the pollution haven hypothesis (Copeland and Taylor, 1994, 2004;
Antweiler et al., 2001), which posits migration of dirty industries to low environmental
regulation countries with trade liberalization, by considering a separate channel through
which trade can affect the environment, i.e., via movement of waste residue itself.

My paper also speaks to the relationship between trade imbalance, unit trade costs,
and the quality-mix of exports in Hummels and Skiba (2004) and Lee et al. (2020b).
Hummels and Skiba (2004) show that smaller unit costs of transportation deteriorate the
quality-mix of exports, leading to exports of heavier goods or waste, as the relative price
of high-quality goods increases. Further, Lee et al. (2020b) show that such decreases
in unit trade costs are generated by a trade surplus in the importing country, while
overlooking the role of environmental regulations in governing waste flows. In contrast, I
show that even after controlling for the bilateral trade imbalances, comparative advantage
and pollution haven effect play a key role in determining the pattern of waste trade. As
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in my paper, Lee et al. (2020b) establish that the externality costs of waste trade may
exceed its economic benefits in certain cases. However, I am further able to distinguish
between the effects of different waste types by using weight-to-value ratios to divide the
waste categories into high- and low-value waste as a close approximation to waste that is
readily recyclable and relatively unrecyclable.

My paper contributes to the literature studying the welfare effects of trade in goods
using a structural gravity framework by endogenizing the generation of waste in manu-
facturing. Shapiro (2016) also builds a structural gravity model to quantify the effects of
international trade on CO2 emissions, where the emissions depend directly on equilibrium
production and consumption decisions. By contrast, my formulation allows for a rich in-
teraction between manufacturing production, waste generation, and trade that plays out
in the counterfactual simulations. I also contribute to this literature methodologically by
proposing a sequential estimation approach for the model parameters.

The paper is organized as follows: Sections 2 and 3 present the data and the empirical
facts on international waste flows, respectively. Section 4 presents the theoretical frame-
work and the strategy for counterfactual calculations. Section 5 presents the estimation
strategy and estimates of model parameters while Section 6 presents the results from the
counterfactuals. Section 7 concludes.

2 Data
With the goal of quantifying the economic gains from waste trade in a static framework,
I use cross-sectional bilateral trade data. Since the focus of this paper is on waste trade,
I augment the data used in prior structural trade work with data on bilateral waste trade
from the UN Comtrade database for 2015. To identify the categories of waste, I use
those six-digit Harmonized System (HS) categories for which the commodity description
primarily uses the keywords waste, scrap, or residual, following Kellenberg (2012). Ta-
ble A.1 lists the 62 six-digit HS categories of waste in detail. For each waste category,
the value in U.S. dollars and weight in kilograms (kg) of bilateral flows is available. Since
industrial waste represents 94-97% of global waste (Liboiron, 2016; Kaza et al., 2018) and
the waste in my sample is primarily industrial in nature, I also obtain data on bilateral
trade in manufactured goods, codes 1-8 under SITC.Rev4.1

Other variables of interest include income levels and wage rate. Thus, I obtain data,
1 The 8 SITC.Rev4 codes broadly represent the following commodities: beverages and tobacco, crude

materials, mineral fuels, lubricants and related materials, animal and vegetable oils, fats and waxes,
chemicals and related products, manufactured goods, machinery and transport equipment, and miscel-
laneous manufactured articles.
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in current USD, on gross domestic product (GDP) and GDP per capita, used as a proxy
for wage rate, from the World Development Indicators database. I also use data on geo-
graphic barriers, trade agreements, and treaties to serve as a proxy for barriers to trade.
The measure of distance, in kilometers, is constructed using the geographic coordinates
of most important cities in a country by Mayer and Zignago (2011). I also use their
bilateral indicators for contiguity and common official language. Further, I construct bi-
lateral indicators for countries that share a free trade agreement (FTA) using data from
the World Trade Organization.2

To control for the relationship between trade imbalance and the quality composition
of trade (Hummels and Skiba, 2004; Lee et al., 2020b), I construct a measure of bilateral
trade surplus from the importing country’s perspective. To do so, I first gather the bilat-
eral trade volume data on those commodities that can be shipped in the same transport
vessels as waste, i.e., I exclude trade data on animal and food products as well as mineral
oils and gases (HS codes: 01-24 and 2705-2713), which require special shipping containers.
Then, I construct the trade surplus from the importing country’s perspective as the ratio
of its total export volume to import volume to use as control in all my specifications.

To capture the level of environmental regulation in a country, I use data on the
Environmental Performance Index (EPI) for 2016 (Hsu et al., 2016).3 The EPI quantifies
the environmental performance of a country’s policies by combining different indicators
on the protection of human health and ecosystem vitality. While EPI may be an imperfect
measure of the stringency of environmental policies of a country, it is the only measure
in my knowledge that provides this information on a comprehensive list of countries. I
further use population and output per unit of land, constructed using data on land area
in square kilometres, from the WDI.

To gather the empirical facts, I use waste trade data among 224 countries and territo-
ries. Aggregating the flows across 62 categories of waste in my sample for each exporter-
importer pair and assuming that missing trade flows are actually zero trade flows, I
obtain 49952 observations (for 224×223 country pairs). As a share of GDP, high-income
countries, mainly in the European and North American regions, are the largest exporters
of waste. In contrast, as a share of GDP, the largest importers of waste comprise not
only low-income countries such as Pakistan, Turkey, and Vietnam but also high-income
countries such as Belgium, Finland, and South Korea. Thus, the pattern of aggregate
waste flows reveals that waste exports primarily come from rich countries, while countries
of all income levels are among the major importers of waste (See Figures A.1 and A.2).

2 To construct the FTA dummies, I use data on trade agreements that are listed as best known by
the WTO: ASEAN, COMESA, EFTA, EU, MERCOSUR, and NAFTA.

3 Starting in 2006, the EPI Report is published every other year, so the EPIs for 2015 were unavailable.
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To capture the heterogeneity in waste flows by recyclability, and therefore, their value
and environmental damage, I disaggregate waste flows into two types—high-value and
low-value—as a close approximation to relatively recyclable and unrecyclable waste. To
do so, I construct the value-to-weight ratios of the 62 categories as the ratio of the average
dollar value and average weight of trade in each category. Then, I divide the 62 categories
into two types of waste: high-value, which corresponds to the top tercile, and low-value,
which corresponds to the bottom two terciles of value-to-weight ratios (See Figure A.6).
Figure 1 shows that while 75% of the categories in high-value waste are metals, low-value
waste is a mix of different materials, including plastics and paper.4 The categories within
low-value waste also overlap substantially with the categories banned by China in 2018,
arguably making these categories more environmentally damaging. While the empirical
facts are robust to an alternative above- and below-median split, I prefer the top- and
bothom-tercile split as the baseline as it matches closely with China’s banned categories.

As a share of GDP, high-income countries in the European and North American re-
gions are the major importers of high-value waste. However, as a share of GDP, the
major importers of low-value waste are primarily lower-income countries, such as Pak-
istan, Turkey, and Vietnam (See Figures A.3 and A.4). Therefore, the combined evidence
in Figure A.1 to A.4 seems to support a pollution haven effect in relative rather than
aggregate waste flows.

3 Empirical Facts
In this section, I present a series of empirical facts motivating the presence of the two
forces—comparative advantage and the pollution haven effect—that govern the pattern
of waste flows across countries. I document these empirical facts based on reduced-form
gravity regressions, where the value of bilateral trade from country i to j in waste type s,
denoted by Xsij, is directly proportional to income levels, Yi and Yj, and inversely related
to trade barriers, τij:

Xsij = exp (β0 + β1 ln Yi + β2 ln Yj + β3s ln τij + β4Zi + β5Zj)× ηij. (1)

The term τij comprises geographic barrier variables: distance, contiguity, and common
language.5 The vector Zi includes logged exporter controls, exporter’s level of environ-

4 Although metals and yarn are a part of both high- and low-value waste, the nature of the categories
within these two broad classes is different. The metals and yarn that comprise high-value waste are
chiefly precious objects, such as gold and silk.

5 In principle, ratification of the Basel Convention could be an important determinant of waste trade.
In practice, by 2015, the vast majority of countries ratified the Basel Convention, with the notable
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Figure 1: Composition of High- and Low-Value Waste

This figure shows the categories in Table A.1 that comprise two types of waste—high- and low-value
waste. High-value waste comprises categories that fall under the top tercile of value-to-weight ratios,
while low-value waste includes the rest of the categories. Metals comprise a major share in both high- and
low-value waste in my sample. However, metals part of the high-value waste is mainly precious metals,
Gold, Copper, Nickel, Aluminum, Tungsten, Molybdenum, Tantalum, Magnesium, Cobalt, Bismuth,
Cadmium, Titanium, Zirconium, and Antimony. Metals part of low-value waste are mainly ferrous in
nature—Steel and Iron, Lead, Zinc, Tin, Beryllium, and Chromium. Yarn also is a part of both types
of waste. As a part of the high-value waste, yarn mainly comprises precious fibres including silk, wool,
and fine animal hair, while as a part of the low-value waste, it comprises coarse animal hair, cotton, and
synthetic fibres.

mental regulation, population, and GDP per unit of land, while Zj includes analogous
importer-level controls. Finally, ηij is the error term with E[ηij|Yi, Yj, τij,Zi,Zj] = 1. Al-
lowing β3 to vary by waste type, as denoted by subscript s, I capture heterogeneity across
types in the sensitivity of trade flows to trade barriers. To estimate Equation (1), I use
the Poisson pseudo-maximum likelihood (PPML) method, which yields consistent and
efficient estimates (Silva and Tenreyro, 2006). To account for unobservable heterogeneity
at the country level, I also estimate a specification with exporter and importer effects.

Further, to study the choice between high-value and low-value waste across countries,
I estimate the following specification:

arcsinh(Ratioij) = β0 + β1 ln Yi + β2 ln Yj + β3 ln τij + β4Zi + β5Zj + εij, (2)

exception of the United States. Thus, this variable has little meaningful variation, and I do not include
it in the analysis.
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where, Ratioij is the fraction of total bilateral waste flows that are high-value and Yi and
Yj are the exporter’s and importer’s per capita incomes, respectively. Since the dependent
variable is a proportion, I adopt the variance-stabilizing inverse hyperbolic sine (IHS)
transformation. Due to the prevalence of many zeros in the dependent variable, estimating
this specification in log- or logit-form would result in the loss of those observations. Hence,
I estimate the specification with an inverse hyperbolic sine transformation, which closely
tracks the log function but is defined at zero (Bellégo et al., 2022).6 Alternatively, I use the
beta regression technique for modelling rates and proportions from Ferrari and Cribari-
Neto (2004).7 Due to the potential correlation between observations of the same trading
partners, I cluster standard errors at the exporter-importer level in all specifications.

Before I discuss empirical facts by type of waste, note that even trade in waste con-
forms with the gravity model of international trade, i.e. waste flows are positively asso-
ciated with incomes of trading partners and negatively associated with trade barriers, as
shown in Table 1

Fact 1: Low-value waste is more sensitive to trade barriers than high-value waste.

Table 1 shows that the negative elasticity of low-value waste trade is larger in magni-
tude than that of high-value waste trade with respect to distance. Specifically, in columns
3-4, the coefficient on the interaction between logged-distance and low-value waste indi-
cator is negative and statistically significant at 1% level. High-value waste is arguably
more easily recyclable, and thus, valuable, than low-value waste. Thus, trade in this
type of waste is not as sensitive to trade costs as low-value waste trade. The observed
trade pattern may also be owing to differences in waste-processing technology in different
countries. Processing high-value waste likely requires technology that is available in only
select high-income countries. As a result, technological availability swamps trade costs
in determining flows of high-value waste. Conversely, trade costs swamp technological
considerations while determining the direction of low-value waste trade, which require
more manual sorting. Thus, comparative advantage not only governs the scale of waste
trade but also relative trade in the two types of waste across countries.

6 The formula for the inverse hyperbolic sine is arcsinh(x) = ln(x +
√
x2 + 1). The function

arcsinh(x) − ln(2) tracks ln(x) very closely for all positive integers, much closer than ln(x + 1). Thus,
except for an intercept shift of ln(2), the coefficients are comparable to using the log transformation if
all values of Ratioij were positive.

7 Actually, beta regression is used in modelling continuous variable y that lies in the open standard
unit interval (0, 1). In my sample, since some observations lie at the extremes 0 and 1, I apply the
standard transformation (y(n−1)+0.5)/n, with sample size n, following Smithson and Verkulien (2006)
and Cribari-Neto and Zeileis (2010).
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Table 1: Gravity Equation Estimates for Waste Flows

This table reports the results from estimation of Equation (1). Columns 1 and 2 report the results
with aggregate bilateral waste flows and Columns 3 and 4 with bilateral flows by two types of waste,
high- and low-value waste. Although I include trade flows among 224 countries or territories in all
specifications, the number of observations varies by specification due to a large number of missing values
in covariates, singletons for a trade partner, or observations separated by fixed effects. See Section 3 for
a description of the regression specification and the estimation methodology. Standard errors clustered
by exporter-importer pairs are in parentheses. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.

Total Waste Flows Waste Flows by Type
log(Exporter’s GDP) 1.129*** 1.129***

(0.172) (0.172)
log(Importer’s GDP) 0.788*** 0.788***

(0.0987) (0.0991)
Low-value 1.880*** 1.645***

(0.549) (0.562)
log(Distance) -0.667*** -0.881*** -0.567*** -0.799***

(0.0782) (0.0673) (0.0771) (0.0829)
log(Distance)×Low-value -0.150** -0.121*

(0.0683) (0.0682)
Contiguity 0.929*** 0.984*** 1.012*** 1.028***

(0.238) (0.197) (0.234) (0.225)
Contiguity×Low-value -0.125 -0.0663

(0.174) (0.201)
Common Language 0.0123 0.150 0.0295 0.115

(0.157) (0.167) (0.172) (0.223)
Common Language×Low-value -0.0255 0.0524

(0.235) (0.237)
Constant -20.87*** 25.44*** -22.75*** 23.70***

(4.917) (0.573) (4.898) (0.697)

Controls Y N Y N
Exporter FE N Y N Y
Importer FE N Y N Y
Pseudo-R2 0.788 0.899 0.752 0.860
Observations 28,392 43,059 56,784 86,118

Fact 2: As income increases, a greater share of a country’s waste imports is of high value.

To further understand the factors influencing the choice between importing the two
types of waste by a country, I estimate Equation (2), where the dependent variable is the
fraction of high-value waste traded. Columns 1-2 in Table 2 reveal that controlling for
other factors, the importer’s per capita income is positively and statistically significantly
associated with the fraction of spending on high-value waste in total waste imports. Thus,
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richer countries allocate a greater share of their expenditure to importing high-value waste
than to importing low-value waste. However, this choice between the two types of waste
could be driven by price differences between high- and low-value waste.

Table 2: Choice between Two Types of Waste

This table reports the results from estimation of Equation (2) and with Ratio as the dependent variable
in Beta regressions. In columns 1 and 2, Ratio is the fraction of dollar-value of total waste flows that is
high-value while in columns 3 and 4, it is the fraction of weight of total waste flows that is high-value.
As total waste flows contain many zero observations, this ratio contains several undefined values that
are dropped from the regression, reducing the number of observations dramatically. See Section 3 for a
description of the regression specification and the estimation methodology. Standard errors clustered by
exporter-importer pairs are in parentheses. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.

Ratio (by Value) Ratio (by Weight)
IHS Beta IHS Beta

log(Exporter’s GDP per capita) -0.00505 0.0296 -0.0158*** -0.00383
(0.00641) (0.0199) (0.00559) (0.0178)

log(Importer’s GDP per capita) 0.0457*** 0.131*** 0.0170*** 0.0835***
(0.00610) (0.0182) (0.00508) (0.0158)

log(Distance) -0.00278 -0.0742*** 0.0187*** -0.0296**
(0.00455) (0.0137) (0.00366) (0.0115)

Contiguity -0.0304** -0.00889 -0.0427*** -0.0458
(0.0148) (0.0460) (0.0113) (0.0368)

Common Language -0.0118 -0.00247 -0.0159* -0.0173
(0.00967) (0.0292) (0.00819) (0.0255)

Constant -1.705*** -7.623*** -0.820*** -6.143***
(0.177) (0.535) (0.149) (0.463)

Controls Y Y Y Y
R2 0.125 0.076
Observations 6,135 6,135 6,075 6,075

Hence, I assess the robustness of my results to using the ratios constructed based
on the weight of waste traded rather than value. Columns 3-4 show that my results
are robust to this change, indicating that a larger share of high-value waste in imports
of richer countries is due to the volumes traded and not price differences. As richer
countries are also higher environmental regulation countries, this finding points towards
the presence of a pollution haven effect in the choice between high- and low-value waste
in addition to the comparative advantage forces above. I find that all my reduced-form
estimates pertaining to Facts 1-2 are robust to the inclusion of bilateral trade imbalance
as a control, which rules out differences in unit trade costs driving the results above.
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4 Model
I assume a world with N countries. Country j has L̄j households, a manufacturing sector
producing a continuum of goods νm ∈ [0, 1], a high-value waste management sector that
processes a continuum of waste materials νh ∈ [0, 1] within high-value waste type, h,
a low-value waste management sector that processes a continuum of waste materials
νl ∈ [0, 1] within low-value waste type, l, and a recycling sector. I describe the modeling
of comparative advantage and pollution haven effect in the rest of this section.

4.1 Preferences

Households consume two commodities, manufactured goods and the recycled good. As-
suming Cobb-Douglas preferences across the composite of manufactured goods and the
recycled product, households allocate fixed fractions of their expenditure to the two com-
modities. The composite of manufactured goods takes a constant elasticity of substitution
(CES) form with elasticity, σm. The utility function for a household in country j is:

Uj = Qα
jC

1−α
j ,

where

Qj =
 ∫ 1

0
qj(νm)

σm−1
σm dνm


σm
σm−1

, σm > 1.

The term Qj represents the composite of manufactured goods, where qj(νm) denotes the
consumption of good νm, and Cj denotes the consumption of the recycled good. Each
household inelastically supplies one unit of labor. Thus, the social welfare of a country
is given by its indirect utility:

Vj = αα(1− α)1−α Yj
Pj
, (3)

where
Yj
Pj

= wjL̄j
Pα
mjp

1−α
rj

,

is the real income. Here, Pj = Pα
mjp

1−α
rj , a composite of the price index for manufactured

goods, Pmj, and price of recycled product, prj, is the overall price index in country j (See
Section 4.4.1), and wj is the wage rate.
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4.2 Technology

Technology varies across goods, sectors, and countries. The efficiency of producing good
νs in sector s ∈ {m,h, l} in country j, zj(νs), is drawn from a Fréchet distribution as
in Eaton and Kortum (2002). For any z, the measure of goods νs ∈ [0, 1] such that the
efficiency of producing these goods zj(νs) ≤ z is given by the cumulative distribution
function of a Fréchet random variable:

Fsj(z) = exp(−Tjz−θs),

where θs > 1 is the shape parameter and Tj > 0 is the scale parameter. For a given θs, the
country-specific parameter Tj determines the aggregate efficiency or absolute advantage
of a country. The assumption that aggregate efficiency, Tj, is the same across all sectors
within a country signifies that a country that is generally efficient at making goods in
one sector is also efficient at making goods in another (Fieler, 2011). In principle, one
can parameterize Tj as a function of level of environmental regulation in a country to
account for the pollution haven effect in overall waste flows. However, this country effect
is absorbed by fixed effects when estimating the trade elasticities. Further, although I
do not explicitly model the scale effects due to differences in environmental regulation
across countries, they are subsumed by changes in Tj in policy counterfactuals.

The parameter θs, which varies by sector but not by country, governs the compara-
tive advantage across varieties within a sector. The variability in technological draws is
inversely related to the parameter θs. A greater variability in technological draws, i.e., a
smaller θs, generates greater price dispersion and thus a larger volume of trade in sector s.
Thus, trade is more intense in goods of the sector with a smaller θ. This parameter also
governs comparative advantage across sectors (Fieler, 2011). The aggregate efficiency in
sector s in country j is E(zj(νs)) ∝ T

1
θs
j . Such a formulation drives the distribution of effi-

ciencies in two sectors in two different countries away from each other. As a consequence,
poor countries tend to specialize in sectors where θs is large, i.e. low-value waste, while
the rich specialize in sectors where θs is small, i.e. manufactured goods.8 Together, the
parameters Tj and θs, which I structurally estimate, characterize comparative advantage
in overall and relative flows in two types of waste. Estimates in Section 5.1 reveal that

8 The expected unit cost of delivering goods from country i to country j relative to the expected unit

cost of procuring it domestically is E(pij(νs))
E(pjj(νs)) =

(
Ti
Tj

)− 1
θs τsijwi

wj
, where τsij is the trade cost for exporting

commodity s from country i to j. For a large θs, the first term is small, so wages swamp technological
ability in determining the costs. Since wages are low for a poor country, it specializes in goods with a
high θ. For a small θ, technology swamps wages, so a high-income country, with high levels of aggregate
efficiency, specializes in a sector with low θ. See Fieler (2011) for details.
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low-value waste flows are indeed more sensitive to trade barriers than high-value waste
flows, consistent with Fact 1 in Section 3.

4.3 Production, Waste Management, and Recycling

The manufacturing sector produces a continuum of goods, νm ∈ [0, 1]. The production of
each manufactured good also generates two byproducts, high-value and low-value waste.
Considering an alternative framework where the recycled product is an intermediate input
to manufacturing, the main qualitative conclusions of the paper continue to hold (See
Appendix A). For simplicity, I model the two types of waste as inputs to production
even though they are byproducts.9 Assuming constant returns to scale, the unit cost of
production is:

pj(νm) =
wβj u

γ
hju

1−β−γ
lj

zj(νm) , (4)

where pj(νm) is the price of manufactured good νm, wj is the wage rate, and usj is the unit
price of collection of waste type s. The government may not necessarily internalize the
external cost of waste generation by setting this price, usj, exogenously. Depending on
whether the waste byproduct is valuable, this price of waste may be positive or negative
for the manufacturer. If waste is not valuable, the manufacturer would pay a positive
price or tax on waste generation and collection. If waste is valuable, this value is probably
negligible relative to the value of final output unless the waste is appropriately managed
or treated, in which case too the manufacturer pays a positive price for waste collection.

The term zj(νm) is the efficiency of producing good νm in country j. Since the
output of each manufactured good is increasing in its inputs, greater waste generation
translates to more manufacturing production. Further, abatement of waste generation is
possible because the three inputs are substitutable; a firm can maintain constant output
by increasing its labor input and reducing its waste generation. The revenue earned by
the government via waste collection is given as a lump-sum subsidy to domestic recycling.

Modeling the source of comparative advantage for a commodity (waste) which is both
a byproduct of manufacturing and an input to recycling presents a challenge in my frame-
work. To quantify the source of comparative advantage in waste trade separately from
manufacturing trade, I allow the waste flow from manufacturing to recycling by way of a
waste management sector. The two types of waste—high-value and low-value—collected
by the government are converted to usable form in a domestic waste-management sector

9 Equivalently, one can model a joint production function of manufactured good, high-value waste,
and low-value waste and then invert it so that the two types of waste become inputs to manufacturing
output (See Copeland and Taylor (2004)). Instead, I simplify the production function to the regular
Cobb-Douglas form with three inputs, two of which are high- and low-value waste.
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that is specific to that kind of waste. Each waste-management sector, s ∈ {h, l}, sorts the
waste into a continuum of materials, νs ∈ [0, 1]. The sector uses only one input, labor,
to produce a sorted material. Assuming constant returns to scale, the unit cost of sorted
material, νs, within waste type s is:

pj(νs) = wj
zj(νs)

, s ∈ {h, l} (5)

where zj(νs) is the efficiency of labor to produce the sorted material νs in country j. The
manufacturing and waste-management markets are competitive.

The recycling sector uses the materials in the two types of waste—high-value and low-
value—as inputs to produce a recycled product. The demand for material νs of waste type
s in country j is denoted by qj(νs). Following Fieler (2011), I employ a non-homothetic
production function for the recycling sector:

∑
s∈{h,l}

[
α

1
σs
s

σs
σs − 1

∫ 1

0
qj(νs)

σs−1
σs dνs

]
,

where αs > 0 is the weight, and σs > 1 governs the elasticity of substitution across
varieties of type s. I normalize ∑s∈{h,l} α

1
σs = 1. The non-homothetic production func-

tion allows countries of different levels of income to allocate different fractions of their
expenditure to the two types of waste.

Solving the cost-minimization problem of the recycling sector, I find that the ratio of
expenditure on high-value waste to low-value waste by this sector in country j is:

Xhj

Xlj

= λσh−σlj ×
αhP

1−σh
hj

αlP
1−σl
lj

(6)

where Psj is the CES price index of waste type s ∈ {h, l}, and λj is the Lagrange multiplier
associated with the cost-minimization problem. The demand for each type increases with
the corresponding weight, αs, and decreases with the corresponding price index, Psj.

The term λσh−σlj determines the ratio of spending on the two types of waste, Xh and
Xl. In this context, σs not only represents the elasticity of substitution but also the
output elasticity of demand for inputs (Fieler, 2011). The more output the recycling
sector produces, the higher the shadow price of recycled output, λj. Assuming that the
elasticity of demand for high-value waste exceeds that of low-value waste (σh > σl),
an increase in total output leads to a greater expenditure share for high-value waste.
Additionally, λj increases with the income level of a country, as shown by the zero-
profit condition of the recycling sector and the market-clearing condition of the recycled
good in Section 4.4.3. Thus, a higher-income country allocates a larger proportion of
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its expenditure to high-value waste than low-value waste. As richer countries are also
higher environmental regulation countries, the country- and waste-specific term, λσh−σlj ,
captures the pollution haven effect in relative flows of high- and low-value waste across
countries (See Fact 2 in Section 3). Figure A.5 depicts the aforementioned connections
between all the sectors within a country.

4.4 Trade

The categories of waste I consider are largely non-hazardous, industrial in nature.10

Therefore, such waste holds a positive value to an importer.11 In my framework, trade is
subject to “iceberg” trade costs. To deliver one unit of variety νs of sector s to country
j, country i needs to ship τsij > 1 units. I normalize τsjj = 1 ∀j, i.e., domestic shipping
is free of trade barriers. The iceberg trade cost is allowed to vary by sector, as denoted
by subscript s.

4.4.1 Price Indices

With perfect competition, the total price of good νs from country i in country j is the
product of marginal cost of production and trade cost:

pij(νs) = wiτsij
zi(νs)

. (7)

Assuming the two types of waste to be homogeneous for collection purposes and its price
equivalent to the price of a unit of labor, I set usi = wi ∀s ∈ {h, l} in Equation (4).
Hence, the term wi in Equation (7) represents the unit cost of production across all
sectors, s ∈ {m,h, l}. A household in country j buys from the lowest-cost supplier.
Thus, the price of good νs in country j is the lowest of the prices offered by all exporters:

pj(νs) = min
k
{pkj(νs)}. (8)

The pricing rule combined with the technology distribution allows me to derive the
price indices for all sectors in each country. As in Eaton and Kortum (2002), the CES
price index for sector s in country j is:

Psj =
Γ
θs + 1− σs

σs

 1
1−σs

× φ
− 1
θs

sj , (9)

10 International trade in hazardous waste is regulated under the Basel Convention.
11 The externality, however, may come from volume of this imported waste that ends up being unre-

cyclable and having to be disposed of. I consider such externality costs from waste trade in Appendix B.
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where Γ is the gamma function, φsj = ∑
i Ti(wiτsij)−θs , and θs + 1 > σs is the necessary

condition for a finite solution. The parameter φsj summarizes how aggregate technologies,
input costs, and trade barriers from around the world govern prices in country j. In the
presence of international trade, the effective technology in each country is enlarged due
to access to technology discounted by input costs and trade barriers from other countries,
leading to a decrease in prices (Eaton and Kortum, 2002).

4.4.2 Trade Flows

In this section, I elaborate how the distribution of prices and the demand structure
determine trade flows in the three sectors for manufactured goods, high-value waste,
and low-value waste. A typical household’s problem yields the demand function for the
composite of manufactured goods. The fraction of income allocated to manufactured
goods, m, in country j is:

Xmj = αwjL̄j. (10)

Similarly, if the wages wj and trade barriers τsij, s ∈ {h, l}, are given, then the
distribution of technologies yields the distribution of prices in the two waste sectors.
Given the prices, solving the recycling sector’s problem yields the demand functions for
the two inputs—high-value and low-value waste. The total expenditure on each type of
waste is:

Xsj = λσsj αsP
1−σs
sj , s ∈ {h, l}. (11)

Thus, the total expenditure of country j on commodities from country i in sector s is the
product of the share spent on i’s goods or materials and the total expenditure on sector
s by country j:

Xsij = Ti(wiτsij)−θs
φsj

Xsj, s ∈ {m,h, l}. (12)

4.4.3 Market Clearing

The Lagrange multiplier associated with the recycling sector’s cost-minimization problem,
λ, is solved implicitly by combining the zero-profit condition and the market-clearing
condition of the recycled good:

∑
s={h,l}

Xsj = (1− α)wjL̄j, ∀j, (13)

which is a continuous and strictly increasing function of income, wjL̄j. Finally, equating
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labor supply with labor demand yields the N labor market-clearing conditions:

β
∑
i

Xmji +
∑

s={h,l}

∑
i

Xsji = wjL̄j. ∀j (14)

This completes the statement of the model.
In summary, the world economy comprises N countries, each with L̄j households,

aggregate productivity Tj, and sector-specific trade costs, τsij. The three export sectors
are manufacturing, high-value waste, and low-value waste, denoted by s ∈ {m,h, l}. The
parameter α governs the fraction of household expenditure on manufactured goods and
the recycled product; the parameters αs and σs govern the size and the income elasticity
of demand of the two types of waste, s ∈ {h, l}; and the trade elasticities, θs, govern the
comparative advantage both within and across sectors. Given wages wj, Equations (9)
and (12) specify trade flows across the three sectors. The equilibrium is defined by the
shadow prices, λ ∈ ∆(N), that solve recycled good market-clearing conditions (13), and
wages, w ∈ ∆(N − 1), that solve labor market-clearing conditions (14). Higher-income
countries allocate greater shares of expenditures to high-value waste due to σh > σl,
and lower-income countries specialize in low-value waste due to higher trade elasticities
(consistent with Facts 1 and 2 in Section 3). The standard comparative advantage forces
and the pollution haven effect determine waste trade patterns in the same direction. Low-
value waste flows disproportionately toward lower income countries not only because of
their cost advantage but also because of their lax environmental policy. Finally, the
fraction of expenditure on goods from a particular country within a sector depends on
technology discounted by input and trade costs.

4.5 Counterfactual Calculations

To measure the effect of a policy change on social welfare, I calculate the empirical
analogue of the equivalent variation. The equivalent variation is the amount of money a
country would accept at old prices to end up at the new utility obtained through a policy
change. Following Dekle et al. (2008), I reformulate the equivalent variation in terms of
a proportional change in real income, Ŷj/P̂j.12 Thus, the equivalent variation for country
j is:

EVj = wjL̄j

 Ŷj
P̂j
− 1

. (15)

12 To calculate the proportional change in real income, I require the proportional change in the price
of recycled good prj . Comparing the first-order conditions from the cost-minimization and profit-
maximization problems of the recycling sector shows that prj = λj , which is solved implicitly using
Equation (13). I use this relationship to measure the proportional change in prj .
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In Appendix B, I consider an extension where households also face externality costs from
the volume of traded waste that is disposed of while in Section 6.4, I present a plausible
range of environmental costs from waste trade for comparison against its benefits.

5 Estimation
In this section, I present the estimation methodology and the results for trade elas-

ticities in Section 5.1, followed by the estimation strategy for the rest of the parameters
in Section 5.2 and the fit between simulated flows at the estimated parameter values and
actual trade flows in the data in Section 5.3. My sample comprises data on 91 countries.
Trade among countries within my sample accounts for 91% of world trade in manufac-
tured goods, 95% of world trade in high-value waste, and 96% of world trade in low-value
waste.

5.1 Trade Elasticities

The gravity equation (12) for sector s relates bilateral trade with aggregate efficiency
and input costs in the exporting country, prices and total expenditure on sector s in
the importing country, and the trade barrier between the two. After rearrangement and
log-linearization, I write the equation as:

ln Xsij

Xsj

= Si − Sj − θs ln τsij, (16)

where Si ≡ lnTi − θs lnwi is the measure of exporting country i’s technology discounted
by input costs while Sj ≡ lnφsj is a measure of importing country j’s prices. The
heterogeneity due to environmental regulations is also absorbed by these country-specific
effects. The estimation of Equation (16) requires data on expenditure on the three sectors
in each country, Xsj. I use Equations (10) and (13) to measure this domestic expenditure
as αwjL̄j for manufacturing and (1−α)wjL̄j for waste, using α calibrated in Section 5.2.13

One challenge in estimating the trade elasticities is that if we observe data on only
the trade flows, changes in these trade flows can be rationalized by changes in either
the trade elasticity parameter or the trade cost parameter. Hence, to identify the trade
elasticties, one must disentangle the effect of trade costs from that of trade elasticities. To

13 Note that Eaton and Kortum (2002) estimate the equation Xij/Xj
Xii/Xi

=
(
Piτij
Pj

)−θ
using a proxy for(

Piτij
Pj

)
that is constructed using price data. This version of the gravity equation, likewise, requires

imputed gross manufacturing production data to construct the dependent variable (Simonovska and
Waugh (2014)).
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do so, I use price data to construct a measure of trade barriers as in Eaton and Kortum
(2002). The domestic price of any good, ν, must be bounded above by the price at which
a consumer can buy the good from another country i. Thus, for the producer of ν in
country j to stay competitive, the following no-arbitrage condition must hold:

pj(ν) ≤ τijpi(ν).

Further, the maximum relative price must also satisfy the above inequality:

max
ν

pj(ν)
pi(ν) ≤ τij.

To compute the measure of trade barriers, I use basic-heading-level price data from the
2017 cycle of the International Comparison Program (ICP).14 Of the 155 basic-headings
in the ICP data, I keep price data on 66 tradable commodities (Simonovska and Waugh,
2014), listed in Table A.2. The data from 2017 are temporally the closest to the trade data
in my sample.15 Thus, I exploit this disaggregated price data to obtain an approximate
measure of trade barriers as follows:

ln τ̂ 1
ij = max

ν
{ln(pj(ν))− ln(pi(ν))}. (17)

where the superscript denotes the first-order statistic. Due to lack of price data for
waste, this measure of trade barriers does not vary by sector, s ∈ {m,h, l}. However,
estimating Equation (16) separately for each sector, the intercept would absorb this
unobservable heterogeneity in trade costs assuming that the trade costs vary by a fixed
proportion among the three sectors, whether due to sector-specific trade agreements or
nontariff measures, irrespective of the country-pair. The trade barrier measure also suffers
from measurement error due to the approximation and errors in the price data itself
(Simonovska and Waugh, 2014). Therefore, I estimate Equation (16) via two-stage least
squares with the geographic barrier variable, distance, as an instrument for τ̂ij.

Since multiple methods to perform this estimation exist in the literature, some discus-
sion is in order. The 2SLS procedure is used to alleviate an errors-in-variables issue when
the measurement error is classical, i.e., mean zero. However, Simonovska and Waugh

14 A basic-heading represents a group of similar and well-defined goods for which expenditure data in
the participating economies are available (World Bank, 2020).

15 The 2017 cycle is the latest in the ICP and thus follows an updated methodology that provides
more reliable data than the previous cycles. Two additional advantages of using the ICP price data
are: first, the sampled goods in the data set span all categories of the GDP, reflecting a wide number
of industries (Simonovska and Waugh, 2014), and second, the dataset extensively covers 216 economies,
which is favorable to my country-level international trade framework.
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(2014) show that Eaton and Kortum’s measure of trade barriers, constructed using a
finite sample of prices, always underestimates the true trade costs. To address this issue,
I instead use a modified trade cost measure, 2τ̂ 1− τ̂ 2, a sum of first-order statistic and the
difference between first- and second-order statistics. Robson and Whitlock (1964) show
that this modified measure is as efficient as τ̂ 1 but less biased. Although Robson and
Whitlock’s approach is not based on explicit distributional assumptions like the simu-
lated method of moments (SMM) approach suggested by Simonovska and Waugh (2014),
I prefer this approach due to its computational simplicity.

5.1.1 Results

Table 3 reports the trade elasticity estimates in the three sectors: manufactured goods,
high-value waste, and low-value waste. I find that the OLS estimates with origin- and
destination-level effects have the expected negative sign and increase in magnitude when
moving from manufacturing to the low-value waste sector, consistent with Fact 1 in Sec-
tion 3 and the pattern in reduced-form results in Table 1. However, the measurement
error in the trade barrier variable can lead to attenuation bias in the OLS estimates. In
support of this interpretation, I find that the negative 2SLS estimates are larger in mag-
nitude, in the range of 7.260 to 9.831. As before, the size of the estimates increases from
manufactured goods to low-value waste. This finding implies that a 1% decrease in trade
costs causes a 7.26% increase in manufacturing, a 7.29% increase in high-value waste,
and a 9.83% increase in low-value waste flows. Since most countries accrue lower benefits
from importing low-value waste than from importing high-value waste or manufactured
goods, the low-value waste flows are the most sensitive to trade costs.

My finding that low-value waste is more sensitive to trade barriers than high-value
waste and manufactured goods speaks to the findings in Hummels and Skiba (2004). They
show that smaller unit costs of transportation deteriorate the quality-mix of exports as a
result of an increase in the relative price of high-quality goods leading to countries export-
ing heavier goods. Further, Lee et al. (2020b) show that such decreases in unit trade costs
are generated by a trade surplus in the importing country. To rule out trade imbalance
or unit shipping costs as an explanation of comparative advantage across sectors, I find
that even after controlling for the trade surplus, ln(trade_volumeji/trade_volumeij),
the magnitude of the trade elasticity estimates and the differences across sectors persist.

The size of the gains from international trade depends inversely on the size of these
trade elasticity estimates. For comparison, I also estimate the trade elasticities using
τ̂ 2 and τ̂ 1 as measures of trade barrier. In Table A.3, I use τ̂ 2 as the measure of trade
barriers, as in Eaton and Kortum (2002). My 2SLS estimate 14.59 (s.e. = 0.65) for
manufactured goods is close to Eaton and Kortum’s estimate of 12.86 (s.e. = 1.64).
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Table 3: Estimating Trade Elasticities with Trade Barrier= 2τ̂ 1
in − τ̂ 2

in

Manufactured Goods High-Value Waste Low-Value Waste
OLS FS 2SLS OLS FS 2SLS OLS FS 2SLS

Trade Barrier -1.170*** -7.260*** -1.361*** -7.290*** -1.501*** -9.831***
(0.0794) (0.338) (0.140) (0.428) (0.123) (0.527)

log(Distance) 0.252*** 0.250*** 0.231***
(0.011) (0.015) (0.012)

Exporter FE Y Y Y Y Y Y Y Y Y
Importer FE Y Y Y Y Y Y Y Y Y
R-squared 0.947 0.986 0.924 0.987 0.919 0.987
Observations 6,932 6932 6,932 2,470 2470 2,470 3,411 3411 3,411
This table reports the results from estimation of Equation (16). Columns 1, 2 and 3 report the results
with bilateral manufactured good flows, Columns 4, 5, and 6 with bilateral high-value waste flows, and
Columns 7, 8, and 9 with bilateral low-value waste flows as the dependent variables. For each sector,
the first column reports the OLS estimates, the second column reports the first-stage estimates, and the
last one reports 2SLS estimates. See Section 5.1 for a discussion on the construction of measure of trade
barriers and the regression specification. In all three sectors, the test for weak instruments yields robust
F-statistics ranging from 294-510, above the cutoff of 104 (Lee et al., 2020a). Standard errors clustered
by exporter-importer pairs are in parentheses. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.

However, consistent with the argument in Simonovska and Waugh (2014), the difference
in estimates between Tables A.3 and A.4 reflects the downward bias in the trade barrier
measure leading to upward biases in trade elasticity estimates. Thus, to estimate the
other model parameters, I prefer the 2SLS estimates in Table 3. Additionally, the 2SLS
estimate for manufactured goods in Table 3 is close to the median estimate of 8.28 in
Eaton and Kortum (2002).

5.2 Price of Recycled Good, Technology, and Trade Costs

Equation (9) to 12 specify the value of trade flows from country i to country j in sector
s:

Xsij = Ti(wiτsij)−θs
φsj

Xsj, s ∈ {m,h, l},

Xmj = αwjL̄j,

Xsj = λσsj αsP
1−σs
sj , s ∈ {h, l},

Psj =
Γ
θs + 1− σs

σs

 1
1−σs

× φ
− 1
θs

sj ,

φsj =
∑
i

Ti(wiτsij)−θs , (18)
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where ∑s∈{h,l} α
1/σs
s = 1, the shadow prices of recycled good λj are solved implicitly using

Equation (13), and the technology parameters, Tj, are solved using Equation (14). The
trade flows for the N countries are a function of wages, {wi}Ni=1, population, {L̄i}Ni=1,
technology parameters, {Ti}Ni=1, the shadow price of recycled goods, {λi}Ni=1, trade bar-
riers between all exporters i and importers j, {τsij}s={m,h,l}, the parameters {θs}s={m,h,l}
controlling the spread of the distribution of technologies in the three sectors, the param-
eters {σs}s={h,l} controlling the elasticity of demand for the two types of waste, and the
weight of high-value waste input in recycling, αh.

To perform the estimation, I set α = 0.993 to match the share of manufacturing trade
in total trade and α1/σh

h = 0.456 to match the share of high-value waste trade in total waste
trade in my sample. I set σm = 3, σh = 2.5, and σl = 2 to meet the condition for finite
solution σs < θs + 1 and the condition σh > σl that governs the fraction of expenditure
allocated to the two kinds of waste in a country based on its income level. For simplicity,
the parameter β that governs the share of expenditure on inputs, labor and waste, by
the manufacturing sector is set at 0.98 for all countries. This figure matches one minus
the share of expenditure on waste-management in overall income from manufacturing for
the U.S. (Simmons, 2016).

Stage I: Price of Recycled Good. To estimate the shadow price of the recycled good,
λj, I use the zero-profit condition for the recycling sector combined with the market-
clearing condition for the recycled good: ∑s={h,l}Xsj = (1− α)wjL̄j. Given the parame-
ters {α, αh, θm, θh, θl, σh, σl}, data on wages {wj}j, and population {L̄j}j, for each guess
of technology parameters {Tj}j, I use the N equations in Equation (13) to solve for the
N unknowns λj. Solving for the Lagrange multipliers in this way reduces the number of
parameters to be estimated by 91.

Stage II: Technology. Given the parameters {α, αh, β, θm, θh, θl, σh, σl}, data on wages
{wj}j and population {L̄j}j and substituting the implicit solution for the Lagrange multi-
pliers {λj}j, Equation (14) describes N labor market-clearing conditions in N unknowns.
For each guess of the trade costs {τsij}, I simulate the whole economy to generate trade
flows until I find the technology parameters {Tj}j that satisfy these market-clearing con-
ditions. Solving for the technology parameters in this way further reduces the number of
parameters to be estimated by 91.16

Stage III: Trade Costs. Substituting implicit solutions of {Ti}Ni=1 and {λj}Nj=1 into
Equation (18), which describes trade flows in the three sectors, I obtain the stochastic

16 Alvarez and Lucas (2007) prove the existence and uniqueness of an equilibrium for the model in
Eaton and Kortum (2002). Further, Fieler (2011) argues that her model satisfies the conditions for
existence and shows, through Monte Carlo simulations, that the parameters are well identified. The
existence and uniqueness in Fieler’s case suggests that the equilibrium for my model, which is an extension
of her model, also exists and is unique.

23



form of trade flow equations as:

Xsij = h(w,L;α, β, αh, θm, θh, θl, σh, σl, {τmij}Ni,n=1, {τhij}Ni,n=1, {τlij}Ni,n=1) + εs (19)

where εs is the error term. Under the restriction that the trade costs τsij ≥ 1 and
τsjj = 1 ∀s, I solve N(N − 1) trade flow equations numerically to obtain N(N − 1) trade
costs, {τsij}Ni,j=1,i 6=j, for each sector s = {m,h, l}. This procedure allows me to infer trade
costs so that the trade flows fit almost perfectly.17

Similar to Fieler (2011), I simulate the whole economy to account for endogenous
variables, including wages, and zero trade flows. However, Fieler assumes trade costs to
be deterministic function of observables such as distance, contiguity, common language,
and trade agreement, and then estimates the corresponding parameters using non-linear
least squares (NLLS). In contrast, as I’m dealing with the larger problem of solving for the
parameters of three sectors simultaneously, I choose to infer trade costs in an analytically
straightforward way as opposed to Fieler’s NLLS and Simonovska and Waugh’s SMM
approach. My approach avoids solving an NLLS optimization problem using the polytope
method, which runs into the issue of convergence to a local rather than global minima in
multivariate cases (Judd, 1998).

A drawback of my approach, however, is that I cannot separately identify bilateral
trade costs from heterogeneity at the country level (Costinot and Rodríguez-Clare, 2014),
such as country-specific preferences towards different commodities. To verify that the
trade cost estimates capture actual trade barriers, I check the extent to which rudimentary
trade cost variables—the observable geographic barriers—explain the variation in these
trade costs in the next section. Further, my estimation approach does not account for
structural errors in trade costs that can affect trade flows via changes in technology
parameters. However, Fieler (2011) demonstrates that the effects of these structural
errors are small, as introducing large multiplicative shocks to trade costs leads to only
small changes in equilibrium wages.

5.3 Goodness of Fit

In this section, I assess the goodness of fit of the model by comparing trade flows predicted
by the model to the actual trade flows in data and checking whether the predicted flows

17 I do not obtain a perfect fit because for each guess of trade costs, I first solve for the technology
parameters and the Lagrange multipliers in Stages I & II. Although the trade costs are allowed to vary
by sector, only one set of technology parameters and Lagrange multipliers solve the market-clearing
conditions, leading to a trade-off in choosing trade costs for the three sectors. Further, I solve for the
trade costs under the restriction, τsij ≥ 1.
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align with facts in the data. Figure 2 plots the simulated trade flows at the estimated
parameter values against the actual flows. Although I do not obtain a perfect fit between
actual and simulated flows, the R2 values are high: 92.02%, 93.27%, and 67.33% for
manufactured goods, high-value waste, and low-value waste, respectively. Thus, at first
glance, the model fits the data well. Further, the model fit worsens when the ratio of
expenditure on high- to low-value waste is independent of the income level of a country,
i.e., σh − σl = 0. Specifically, the R2 is lower by at least 8%, indicating the presence of a
pollution haven effect in data.18

Figure 2: Goodness of Fit-Trade Flows

This figure shows the simulated flows at the estimated parameter values from Sections 5.1 and 5.2 against
the actual flows in the data for the three sectors—manufactured goods, high-value waste and low-value
waste. The graphs also report the R2s from the OLS regression of actual flows on simulated flows.

As a sanity check, I evaluate whether the observable trade barriers explain the varia-
tion in the inferred trade costs from Stage III. To do so, I estimate the following equations:

log(τ̂sij) = γ1 + γ2Distanceij + γ3Distance
2
ij + δDij + εsij, s ∈ {m,h, l} (20)

where τ̂sij are the inferred trade costs from Stage III, and Dij is a vector that includes
bilateral dummy variables. The dummies for manufactured goods include contiguity,

18 I experiment with different values of σh and σl satisfying σs < θs + 1 and σh > σl and find that
the predicted flows and the R2 do not change. However, estimating the trade costs under the reverse
condition, σl > σh, worsens the model fit. Specifically, the R2 are lower by at least 13%.
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common language, and free trade agreement. For high- and low-value waste, I only
include the dummies for contiguity and common language. Table 4 shows that the R̄2

for the three sectors is in the range of 4.3-9.4%. Even though the R2 are relatively low
because I exclude country- and sector-specific trade barriers for this sanity check, they
suggest that the estimated trade costs capture variation due to geographic barriers. In
addition, since the coefficient on Distance is positive and significant while the coefficient
on Distance2 is negative and significant, the estimated trade costs are a concave function
of distance. Thus, the positive marginal effect of distance on trade costs is decreasing
with distance. The signs on the rest of the dummies—contiguity, common language, and
free trade agreement—are consistent with the facts obtained in Section 3.

Table 4: Goodness of Fit-Estimated Trade Costs and Geographic Barriers

Manufactured Goods High-Value Waste Low-Value Waste
Trade Costs Trade Costs Trade Costs

Distance 0.052∗∗∗ 0.058∗∗∗ 0.047∗∗∗
(0.006) (0.007) (0.005)

Distance2 −0.002∗∗∗ −0.002∗∗∗ −0.002∗∗∗
(0.0003) (0.0004) (0.0003)

Contiguity 0.215 −0.102∗ −0.140∗∗
(0.176) (0.055) (0.068)

Common Language −0.038 −0.055∗ 0.001
(0.039) (0.033) (0.028)

Free Trade Agreement −0.148∗∗∗
(0.019)

Constant 0.969∗∗∗ 0.649∗∗∗ 0.767∗∗∗
(0.023) (0.026) (0.017)

R2 0.095 0.052 0.044
Adjusted R2 0.094 0.050 0.043
Observations 7,862 2,594 3,623

This table presents the results from estimation of Equation (20). The dependent variables are the log of
estimated trade costs from Section 5.2 for the three sectors in my model. See Section 5.3 for a description
of the regression specification. I exclude the observations where trade flows are zero. Standard errors
clustered by exporter-importer pairs are in parentheses. Significance codes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Figure A.7 shows that the residuals are larger for higher-income countries. Table 5
shows that, as a percentage of GDP, trade among the 30 richest countries in the sample
is 12.558% for the manufacturing sector, 0.048% for high-value waste, and 0.047% for
low-value waste. The model closely predicts these shares to be 12.396%, 0.050%, and
0.040%, respectively. Unlike the Eaton and Kortum (2002) model, which underestimates
trade flows in general, the model captures trade among rich countries well. Consistent
with Fieler (2011), this finding is robust to the choice of weights, as the dependent
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variable Xij in Stage III places higher weights on larger countries.19 Thus, even though
the residuals are higher for larger countries, the model adequately captures trade among
them. Further, the fact that the model underpredicts low-value waste trade for the rich,
who trade relatively less in this sector explains the finding that the R2 for this sector in
Figure 2 is lower than that for the other two.

Table 5: Goodness of Fit-Trade as a % of GDP

Countries Data Model

Panel A: Manufactured Goods
30 Richest 12.558% 12.396%
Rest 6.137% 5.513%

Panel B: High-Value Waste
30 Richest 0.048% 0.050%
Rest 0.011% 0.011%

Panel C: Low-Value Waste
30 Richest 0.047% 0.040%
Rest 0.022% 0.023%

This table reports the share of trade as a percentage of GDP. Column 1 reports the shares for the actual
flows in the data while Column 2 reports the shares for the simulated flows at estimated parameter values
for the model. Each panel represents the trade shares for the three sectors in the model.

The model’s prediction for trade among the rest of the countries is also close—5.513%,
0.011%, and 0.023% against 6.137%, 0.011%, and 0.022% in the data. Thus, the model
captures the empirical fact that rich countries trade more in all three sectors than lower-
income countries. Additionally, it accounts for the fact that the rich trade more in
high-value waste than low-value waste, while the lower-income countries trade more in
low-value waste than high-value waste.

Figure 3 illustrates the choice between the two types of waste. The data show an
increasing and statistically significant relationship between the share of imports of high-
value waste in total waste and income, and the model correctly predicts this relationship.
Panel A in Table A.5 shows that the model also captures the increasing relationship
between the sector-specific share of total trade in GDP, which I refer to as “openness”
for that sector, and income per capita. Panel B in Table A.5 replaces income per capita

19 Silva and Tenreyro (2006) argue that the choice of weights depends on the pattern of heteroscedas-
ticity and is thus an empirical question. Even though the observations for larger countries have more
information, they are also noisier, while the observations for smaller countries are prone to measurement
error.
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with total income in the regressions. In the data, the slopes of the regression lines are
negative for all three sectors and statistically insignificant for two. Similarly, the slopes
are negative according to the model. The size of a country presents two opposing forces.
On the one hand, trade is a small fraction of a large country’s total income. On the
other hand, higher-income countries trade more because they have higher incomes per
capita. Thus, middle-income countries tend to have larger variability in trade shares
(Fieler, 2011), which is also a fact that the model captures well.

Figure 3: Goodness of Fit-Fraction of High-Value Waste in Total Waste Imports

This figure shows the scatter plots of fraction of dollar-value of high-value waste in total value of waste
imports for the countries in my sample. The left panel is the plot for actual data while the right panel is
for the simulated flows at estimated parameter values for the model. I also report the slopes from OLS
regression of fraction of expenditure on high-value waste on log(GDP ).

6 Counterfactuals
In this section, I study a set of policy counterfactuals to study the effects of waste trade.
For each policy change, I change the relevant set of trade costs and solve the market-
clearing conditions (13) and (14) for the new equilibrium recycled good prices and wages.
Then, I substitute the indirect utility at the new equilibrium along with that at the old
equilibrium into Equation (26) to calculate the effect of the policy change.
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6.1 Importance of Pollution Haven Effect

To study the role of pollution haven effect in altering trade patterns and economic gains,
I impose a counterfactual where the ratio of expenditure on high- to low-value waste is
independent of the income level of a country, i.e., σh−σl = 0. Table 6 shows that the rich
countries lose $4 billion while the lower-income countries gain $2.4 billion on eliminating
the pollution haven effect.

In the absence of PHE in relative flows of the two types of waste, the recycling sector
in lower (high) income group now allocates a lower (higher) fraction of its expenditure to
importing and reprocessing low-value waste. This change disrupts the demand for low-
value waste by lower-income countries and high-value waste by high-income countries.
Therefore, as poor (rich) countries specialize in exports of low-value (high-value) waste,
their manufacturing production is adversely affected. However, recycling production in
lower (high) income countries is made better (worse) off as they now reprocess a larger
fraction of high-value (low-value) waste. Combining the effects on manufacturing and
recycling production, I find that the benefits for the rich decrease and the benefits for the
poor increase. Overall, not allowing pollution havens makes the lower-income countries
better off at the expense of the rich. In addition to a global gain of $2 billion that can
be attributed to the PHE, the data support the presence of this effect (See Section 5.3).
Therefore, I conduct the policy counterfactuals below while allowing for the pollution
haven effect.

Table 6: Importance of Pollution Haven Effect

∆ Gross Benefits
Income Group (%GDP) (billions $)
Global -0.003 -2

Rich -0.009 -4
Middle 0.009 2
Poor 0.012 0.4

This table reports the benefits from removing the pollution haven effect, i.e. setting σh = σl. The income
groups in Column 1 are based on 2015 GDP per capita. The poor comprise 13 countries with GDP per
capita < $2400. The middle and the rich each comprise 39 countries with GDP per capita >= $2400 and
< $14000 and GDP per capita >= 14000, respectively. The ∆ Gross Benefits are calculated in terms of
proportional changes in real income, wjL̄j(Ŷj/P̂j − 1). Baseline GDP is 2015 GDP. See Section 6.1 for
further details.

6.2 Waste-Autarky

In the waste-autarky counterfactual, trade in only high-value waste and low-value waste
is shut down, i.e., τsin → ∞ ∀i 6= n ∀s ∈ {h, l}. This counterfactual shows the effect of
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not only changes in waste trade patterns but also of the changes in scale of production
in all three sectors of the economy that ensue from this policy change. Column 1 in
Panel A in Table 7 reports the gross benefits of prohibiting trade in waste. Globally, the
gains due to trade in waste are 0.013% of GDP. While waste trade accounts for 0.7%
of overall trade by value, the gains from waste trade are only 0.43% of the gains from
overall trade.20 This finding suggests that, per unit of trade value, waste trade creates
about 60% the gains from regular trade.

Differentiating the gains by income group, I find that poor countries disproportion-
ately benefit from trade in waste, at 0.021% of GDP. Two main forces govern the dif-
ferentiated effects on countries. First, the non-homotheticity in the demand for the two
types of waste makes richer countries spend a greater fraction on high-value waste than
low-value waste. Thus, as countries gain access to import opportunities from opening to
trade in waste, their recycling sector shifts its expenditure toward high-value waste and
away from low-value waste. This substitution leads to a decline in the scale of generation
of low-value waste even though more options for dealing with waste become available
through the waste trade. Globally, the volume of high-value waste rises by 12.25%, while
the volume of low-value waste declines by 0.73%.

Equation (11) shows that the changes in the prices of the two inputs to recycling, i.e.,
high- and low-value waste, relative to the price of recycled output are sufficient to explain
the changes in overall volumes of waste generation. Thus, a rise in the price of low-value
waste and a fall in the price of high-value waste relative to the price of recycling output
explain such volume changes. The second force is the commodity a country specializes in,
governed by trade elasticities. Since low-income countries specialize in low-value waste,
the relative price increase for this input benefits them the most. In summary, all country
groups are better off with waste trade, i.e., restricting waste trade is inefficient due to
incomplete specialization.

I find that high-value waste trade creates effects that are qualitatively similar to the
overall waste trade. However, rich countries, which specialize in high-value waste export
and disproportionately use it as an input in their recycling, gain the most—0.012% of
GDP (omitted in the table for space). In contrast, with low-value waste trade, the
direction of changes in the volume of generation of the two types of waste flips; high-
value waste generation decreases by 1.5% while low-value waste generation increases by
1.8% as its relative price falls. As a result, middle-income countries, which specialize in
low-value waste are worse off (Panel B in Table 7).

I assess the robustness of my estimates to a variety of alternatives: First, Simonovska
and Waugh (2014) show that the true trade elasticity for manufactured goods is roughly

20 The size of these gains is also commensurate with increasing trade costs in all sectors by 0.081%.
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Table 7: Gross Benefits

Baseline Trade Elasticities PHE Intermediate Input
Income Group (%GDP) (billions $) (%GDP) (billions $) (%GDP) (billions $) (%GDP) (billions $)

Panel A: Waste-Autarky
Global -0.013 -9 -0.029 -21 -0.013 -9 -0.014 -10

Rich -0.014 -6 -0.037 -17 -0.015 -7 -0.016 -7
Middle -0.009 -2 -0.014 -3 -0.007 -1 -0.013 -3
Poor -0.021 -0.6 -0.019 -0.6 -0.028 -0.9 0.002 0.05

Panel B: Low-Value Waste-Autarky
Global -0.004 -3 -0.008 -6 -0.004 -2.5 -0.002 -1

Rich -0.006 -3 -0.012 -6 -0.003 -1 -0.002 -1
Middle 0.001 0.2 -0.003 -0.6 -0.003 -0.8 -0.001 -0.1
Poor -0.004 -0.1 0.009 0.3 -0.012 -0.4 0.001 0.04

Panel C: China Ban
Global -0.002 -1 -0.001 -0.8 0.0003 0.2 -0.001 -0.5

Rich -0.002 -1 -0.002 -1 0.001 0.3 -0.001 -0.7
Middle -0.0001 -0.03 0.001 0.1 -0.001 -0.3 -0.0002 -0.04
Poor 0.002 0.06 0.008 0.2 0.009 0.3 0.008 0.3

Each panel in this table reports the results from a counterfactual exercise. The income groups in Column
1 are based on 2015 GDP per capita. The poor comprise 13 countries with GDP per capita < $2400.
The middle and the rich each comprise 39 countries with GDP per capita >= $2400 and < $14000 and
GDP per capita >= 14000, respectively. The ∆ Gross Benefits are calculated in terms of proportional
changes in real income, wjL̄j(Ŷj/P̂j − 1). Baseline GDP is 2015 GDP. See Sections 4.5 and 6 for further
details.

half of the estimate found using Eaton and Kortum’s 2SLS approach. Commensurate
with their finding, I set the trade elasticities θm = 4.85, θh = 4.95, and θl = 6.58, which
are half of the 2SLS estimates in Table A.4. Column 2 in Table 7 shows the estimates
across counterfactuals. As the variability in labor efficiency increases, i.e., the size of the
trade elasticity estimates decreases, the size of gains increases across all counterfactuals
(Simonovska and Waugh, 2014; Shapiro, 2016). However, the qualitative conclusions—
that waste trade makes countries of all income levels better while low-value waste trade
makes lower-income countries worse off—are robust to these changes (See Column 2 in
Table 7).

Next, as pollution havens are created on liberalization of trade, I test whether low-
value waste trade still makes lower-income countries worse off in the absence of the PHE.
Column 3 in Table 7 shows that allowing trade in low-value waste now makes both middle-
and low-income countries better off. Thus, by removing the pollution haven effect as a
source of waste flows, all countries are better off with trade in even low-value waste. In
summary, the pollution haven effect plays a crucial role in creating economic losses due
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to waste trade in lower-income countries.
Finally, a more realistic framework is one where the recycled good serves as an in-

termediate input to manufacturing production instead of as a final consumption good.
This modified framework is in Appendix A. Upon re-estimating the parameters under
this modified framework, I conduct the counterfactual exercises. Column 4 in Table 7
shows that all qualitative conclusions of the paper hold except that any type of waste
trade now hurts the lower income countries. Allowing any waste trade decreases the price
of recycled product relative to manufactured goods. Thus, gross benefits for the lower
income countries decline as they specialize in waste reprocessing.

6.3 China Ban

In 2018, China imposed an import ban on 24 categories of waste that included plastics,
paper, and yarn. Over the next two years, it expanded the banned categories to include
scrap metal, old ships, slag, stainless steel, and timber (You, 2018). Since the banned
categories have substantial overlap with low-value waste in my sample, I shut down
imports of low-value waste by China, a major importer of this type of waste, to study
the effects of the ban. The policy increased China’s gross benefits while helping other
low-income countries, such as India and the Philippines, in the same manner.

Panel C in Table 7 presents the impacts on gross benefits aggregated by income level.
Column 1 shows that rich countries lose 0.002% of GDP, while poor countries gain 0.002%
of GDP as a result of the ban. Since poor countries specialize in low-value waste, they
experience positive benefits from this policy change, explained by the increase in the
relative price of low-value waste. Similar to a ban on low-value waste trade, I find that
the overall volume of high-value waste increases by 0.46%, while that of low-value waste
decreases by 0.11%. Thus, the rich are worse off, while the lower-income countries are
better off. Even with a less radical regulation on low-value waste trade, the lower-income
countries are better off at the expense of the rich who now reprocess more of the low-value
waste. Columns 2-4 show that these results are robust to alternative estimates of trade
elasticities and recycled good as an intermediate input, but not to eliminating the PHE.

6.4 Environmental Costs

In this section, I present estimates of the environmental costs of waste trade for compar-
ison against the gains from waste trade shown above. Imported recyclable waste that is
mixed with non-recyclable waste inevitably generates a negative externality via disposal
(Gutierrez, 2016). Further, recycling firms don’t always internalize such externalities
while making the decision to trade in waste (Vidal, 2014). The methodology for calcula-
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tion of the externality costs is in Appendix B. Comparing Column 1 in Table 8 with that
in Table 7 reveals that countries of all income levels are better off with waste trade while
lower-income countries are worse off with low-value waste trade even after accounting for
the environmental costs.

A concern in the calculation of externality costs is the choice of estimates for the social
marginal cost of disposed waste. In particular, the costs of carbon dioxide emissions from
waste disposal are borne by the world as a whole. Therefore, the estimate of $1000/tonne
from Bond et al. (2020), which I use for the baseline, partially accounts for external effects
at the global rather than the domestic level. Carbon dioxide emissions account for a share
of 37.5% of this number. Thus, I check the robustness of my welfare estimates to lowering
the social marginal cost for the European Union to $625 instead. The results in Column
2 of Table 8 show that the results are robust to this change.

However, a high level of uncertainty persists in estimates of external costs of disposal
due to the dearth of good classification systems for waste materials and information on
their heterogeneity and toxicity (Eshet et al., 2005; Liboiron, 2016). Eshet et al. (2005)
provide estimates of economic valuation of emissions and leachate from landfilling and
incineration of waste. In addition, the authors provide a range for economic valuation
of disamenities from landfilling and incineration. I sum the mid-points from these three
ranges of estimates to come up with a figure of $193.85/tonne, which is 80% smaller in
magnitude than the baseline, to use as a robustness check. Column 3 of Table 8 shows
that qualitative conclusions are robust to even the lower environmental costs.

I also test the robustness of my environmental cost estimates to a Cobb-Douglas for-
mulation of the utility across the composite of manufactured goods, recycled products,
and the externality, based on Shapiro (2016) (See Appendix B.3 for methodology). Since
the substitution across goods and the externality is less sensitive to price changes in the
Cobb-Douglas formulation than in the baseline nested CES formulation, the environmen-
tal cost estimates are larger in magnitude (See Column 4 in Table 8). However, even
after accounting for the environmental costs under different scenarios, the main quali-
tative conclusions of the paper continue to hold: existing patterns of waste trade make
countries of all income levels better off, but low-value waste trade makes middle-income
countries worse off. In addition, the China ban makes lower-income countries, including
China, better-off.

7 Conclusion
I quantify the economic implications of international trade in waste and the associated
regulations. To this end, I build a structural gravity model with the generation of waste
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Table 8: Environmental Costs

Baseline SMC SMC Functional Form
excluding CO2 from Eshet et al. (2005)

Income Group (%GDP) (billions $) (%GDP) (billions $) (%GDP) (billions $) (%GDP) (billions $)

Panel A: Waste-Autarky
Global 0.001 0.4 0.00001 0.004 0.00001 0.007 0.002 1

Rich 0.0001 0.05 -0.000001 -0.0007 -0.000001 -0.0003 0.0004 0.2
Middle 0.001 0.1 0.00001 0.0014 0.00001 0.003 0.003 0.7
Poor 0.007 0.2 0.0001 0.0033 0.0001 0.005 0.016 0.5

Panel B: Low-Value Waste-Autarky
Global -0.003 -2 -0.00004 -0.03 -0.0001 -0.04 -0.019 -13

Rich -0.003 -1 -0.00003 -0.01 -0.0001 -0.02 -0.017 -8
Middle -0.004 -1 -0.0001 -0.01 -0.0001 -0.02 -0.022 -5
Poor -0.002 -0.05 -0.00002 -0.001 -0.00003 -0.001 -0.005 -0.1

Panel C: China Ban
Global -0.00004 -0.03 -0.000001 -0.0008 -0.000001 -0.001 0.001 1

Rich 0.001 0.4 0.00001 0.004 0.00001 0.007 0.006 3
Middle -0.001 -0.3 -0.00002 -0.004 -0.00003 -0.007 -0.008 -2
Poor -0.002 -0.05 -0.00002 -0.001 -0.00004 -0.001 -0.006 -0.2

Each panel in this table reports the results from a counterfactual exercise. The income groups in Column
1 are based on 2015 GDP per capita. The poor comprise 13 countries with GDP per capita < $2400.
The middle and the rich each comprise 39 countries with GDP per capita >= $2400 and < $14000 and
GDP per capita >= 14000, respectively. The ∆ Environmental Costs are the differences between gross
and net benefits, i.e. equivalent variation. Baseline GDP is 2015 GDP. See Section 6.4 for further details.

micro-founded as a by-product of manufacturing where waste itself is an input to recycling
and waste flows are governed by both comparative advantage and the pollution haven
effect. I further allow for heterogeneity in the abilities of countries to both generate and
recycle two types of waste, high- and low-value waste. The rich countries like the US
which are technologically better generate high-value waste like metals while the lower-
income countries with cheaper labor specialize in low-value waste like plastics. In trade
data, this heterogeneity reflects as low-value waste being more sensitive to trade barriers
than high-value waste and is crucial in determining the size of gains from trade in the
two types. My model also captures the PHE in relative flows of two types of waste by
formulating a non-homothetic production in a country’s recycling sector that uses both
types of waste to produce a recycled good.

One challenge in estimating the model parameters in a structural gravity framework
is to disentangle the effect of trade elasticities from that of trade costs due essentially
to the curse of dimensionality. I propose a sequential estimation approach whereby I
first estimate the trade elasticities by using model predictions to construct an economic
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measure of trade barriers, for which the geographic barrier variables serve as instruments.
Then, I estimate the rest of the key parameters of the model, including the trade costs,
by simulating the world economy. I find that a 1% decrease in trade costs causes a
7.3% increase in manufactured goods and high-value waste flows and a 9.8% increase in
low-value waste flows.

My counterfactual simulations show that the existing patterns of waste trade make
countries of all income levels better off even after accounting for the costs of negative
externalities from waste disposal. Conversely, allowing trade in only low-value waste
makes lower-income countries worse off. Kaza et al. (2018) asserts that global waste
generation will grow by 69% by 2050, with most of this increase coming from lower-
income countries whose incomes are rising. These countries also have much higher open
dumping rates that contribute to the environmental costs of waste. My paper shows that
targeted waste trade policy has the potential to tackle the issue of waste through the
creation of scale and compositional changes in waste generation. Thus, in the absence
of a first-best policy, such as a domestic tax on waste disposal on manufacturers, waste
trade policy can serve as a second-best instrument. I also show that a low-value waste
trade ban helps lower-income countries, which suggests that a policy regulating the flow
of low-value waste would facilitate an equitable distribution of the burden of waste across
countries. Even a less radical regulation on low-value waste trade such as China’s 2018
ban on low-value waste imports makes lower income countries better off at the expense
of the rich that then have to process more of the polluting low-value waste.

The main qualitative findings of the paper continue to hold under alternative trade
elasticity estimates, recycled good as an intermediate input, and a range of environmental
cost estimates. The only exception to this occurs when the PHE is eliminated, where
liberalization in any waste trade makes even the lower-income countries better off. Thus,
the economic loss in lower-income countries due to trade in low-value waste is attributed
to the pollution haven effect.
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Figure A.1: Waste Exports (% of GDP)

This figure shows the dollar-value of overall waste exports of a country as a percentage of its GDP. The
darker the color, the larger are the country’s waste exports as a share of its income. The waste categories
part of my sample are in Table A.1. White represents missing data.

0 0.044 0.1 0.2 0.31 0.44 0.63 0.93 1.8 10
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Figure A.2: Waste Imports (% of GDP)

This figure shows the dollar-value of overall waste imports of a country as a percentage of its GDP. The
darker the color, the larger are the country’s waste imports as a share of its income. The waste categories
part of my sample are in Table A.1. White represents missing data.

0 0.043 0.12 0.19 0.3 0.44 0.62 0.95 1.3 11

Figure A.3: High-Value Waste Imports (% of GDP)

This figure shows the dollar-value of high-value waste imports of a country as a percentage of its GDP.
The darker the color, the larger are the country’s waste imports as a share of its income. White represents
missing data.

0 0.005 0.016 0.041 0.075 0.11 0.17 0.23 0.31 0.43
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Figure A.4: Low-Value Waste Imports (% of GDP)

This figure shows the dollar-value of low-value waste imports of a country as a percentage of its GDP. The
darker the color, the larger are the country’s waste imports as a share of its income. White represents
missing data.

0 0.024 0.06 0.13 0.22 0.3 0.48 0.95 1.2 11
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Figure A.5: Flow of Goods and Services between Sectors in a Country

This figure shows the links between sectors in the general equilibrium model described in Section 4.
Specifically, the figure depicts the flow of inputs, labor and two types of waste, to the production and
waste-management sectors, and the flow of manufactured output and recycled product to households for
final consumption. The black arrows represent domestic flows while the orange arrows represent both
domestic and international flows. See Section 4 for further details.
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Figure A.6: Value-to-weight Ratios for Waste Categories

This figure presents the value-to-weight ratios across the 62 six-digit HS categories of waste. To con-
struct the value-to-weight ratios, I calculate the average dollar-value and average weight of trade in each
category, and take the ratio of the subsequent quantities. I exclude the outlier HS category 810330-
Tantalum waste, which has a value-to-weight ratio of $63/kg, from the figure. The dotted line represents
the separation between high-value and low-value waste in my sample.

Figure A.7: Goodness of Fit-Sum of Square Residuals by Importer

This figure shows the sum of squared residuals by importing country from the OLS regression of actual
flows on simulated flows at estimated parameter values from Sections 5.1 and 5.2.
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Table A.1: Harmonized System (HS) Categories of Waste

This table lists the 62 six-digit HS categories of waste in my sample, picked following Kellenberg (2012).

HS Code Commodity Description HS Code Commodity Description
251720 Macadam of slag/dross/sim. industrial waste 520210 Yarn waste (incl. thread waste), of cotton
252530 Mica waste 520299 Cotton waste other than yarn waste
261900 Slag, dross (excl. granulated slag), scalings,

and other waste from mfr.
550510 Waste (incl. noils, yarn waste and garnetted stock)

of synth. fibers
262110 Ash and residues from the incineration of

municipal waste
550520 Waste (incl. noils, yarn waste and garnetted stock)

of art. fibers
271091 Waste oils cont. polychlorinated biphenyls (PCBs) 711291 Waste and scrap of gold incl. metal clad with gold
271099 Waste oils other than those cont. PCBs 711299 Waste and scrap of precious metal/metal clad with

precious metal
300680 Waste pharmaceuticals 720410 Waste and scrap of cast iron
382510 Municipal waste 720421 Waste and scrap of stainless steel
382530 Clinical waste 720429 Waste and scrap of alloy steel other than stainless

steel
382541 Halogenated waste organic solvents 720430 Waste and scrap of tinned iron/steel
382549 Waste organic solvents other than halogenated

waste organic solvents
720441 Ferrous turnings, shavings, chips, milling waste,

sawdust filings
382550 Wastes of metal pickling liquors,hydraulic fluids,

brake fluids, etc
720449 Ferrous waste and scrap (excl. 720410-720441)

382561 Wastes from chem./allied industries
mainly cont. organic constituents

740400 Copper waste and scrap

382569 Wastes from chem./allied industries
n.e.s. in Ch. 38

750300 Nickel waste and scrap

382590 Residual prods. of chem./allied industries
n.e.s. in Ch. 38

760200 Aluminum waste and scrap

391510 Waste, parings, and scrap of polymers of ethylene 780200 Lead waste and scrap
391520 Waste, parings, and scrap of polymers of strene 790200 Zinc waste and scrap
391530 Waste, parings, and scrap of polymers of vinyl chloride 800200 Tin waste and scrap
391590 Waste, parings, and scrap of plastics n.e.s. 39.15 810197 Tungsten waste and scrap
400400 Waste, parings, and scrap of rubber (excl. hard rubber) 810297 Molybdenum waste and scrap
411520 Parings and oth. waste of leather/composition leather

not suit. for mfr.
810330 Tantalum waste and scrap

440130 Sawdust and wood waste and scrap 810420 Magnesium waste and scrap
450190 Waste cork; crushed/granulated/ground cork 810530 Cobalt waste and scrap
470710 Recovered (waste and scrap) unbleached

kraft paper/paperboard
810600 Bismuth and arts. thereof, incl. waste and scrap

470720 Recovered (waste and scrap) paper/paperboard
mainly of bleached chem.

810730 Cadmium waste and scrap

470730 Recovered (waste and scrap) paper/paperboard
made mainly of mech. pulp

810830 Titanium waste and scrap

470790 Recovered (waste and scrap) paper/paperboard
(excl. of 470710-470730)

810930 Zirconium waste and scrap

500310 Silk waste (incl. cocoons unsuit. for reeling,
yarn waste and garnetted stock)

811020 Antimony waste and scrap

500390 Silk waste (incl. cocoons suit. for reeling,
yarn waste and garnetted stock)

811213 Beryllium waste and scrap

510320 Waste of wool/of fine animal hair, incl. yarn waste 811222 Chromium waste and scrap
510330 Waste of coarse animal hair 854810 Waste and scrap of primary cells, primary batteries
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Table A.2: ICP Price Data

This table lists the 66 tradable basic headings for which I have purchasing power parity (PPP) data from
ICP’s 2017 cycle. I use the price data to estimate trade elasticities in my model. See Section 5.1 for a
discussion on the choice of basic-headings.

Product Name Product Name
Rice Clothing materials, other articles of clothing and clothing accessories
Other cereals, flour and other cereal products Garments
Bread Shoes and other footwear
Other bakery products Furniture and furnishings
Pasta products and couscous Carpets and other floor coverings
Beef and veal Repair of furniture, furnishings and floor coverings
Pork Household textiles
Lamb, mutton and goat Major household appliances whether electric or not
Poultry Small electric household appliances
Other meats and meat preparations Glassware, tableware and household utensils
Fresh, chilled or frozen fish and seafood Major tools and equipment
Preserved or processed fish and seafood Small tools and miscellaneous accessories
Fresh milk Non-durable household goods
Preserved milk and other milk products Pharmaceutical products
Cheese and curd Other medical products
Eggs and egg-based products Therapeutic appliances and equipment
Butter and margarine Motor cars
Other edible oils and fats Motor cycles
Fresh or chilled fruit Bicycles
Frozen, preserved or processed fruit and fruit-based products Telephone and telefax equipment
Fresh or chilled vegetables, other than potatoes and other tuber vegetables Audio-visual, photographic and information processing equipment
Fresh or chilled potatoes and other tuber vegetables Recording media
Frozen, preserved or processed vegetables and vegetable-based products Major durables for outdoor and indoor recreation
Sugar Other recreational items and equipment
Jams, marmalades and honey Newspapers, books and stationery
Confectionery, chocolate and ice cream Appliances, articles and products for personal care
Food products n.e.c. Jewellery, clocks and watches
Coffee, tea and cocoa Fabricated metal products, except machinery and equipment
Mineral waters, soft drinks, fruit and vegetable juices Electrical and optical equipment
Spirits General purpose machinery
Wine Special purpose machinery
Beer Road transport equipment
Tobacco Other transport equipment
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Table A.3: Estimating Trade Elasticities with Trade Barrier= τ̂ 2
in

This table reports the results from estimation of Equation (16). Columns 1, 2 and 3 report the results
with bilateral manufactured good flows, Columns 4, 5, and 6 with bilateral high-value waste flows, and
Columns 7, 8, and 9 with bilateral low-value waste flows as the dependent variables. For each sector,
the first column reports the OLS estimates, the second column reports the first-stage estimates, and the
last one reports 2SLS estimates. See Section 5.1 for a discussion on the construction of measure of trade
barriers and the regression specification. In all three sectors, the test for weak instruments yields robust
F-statistics ranging from 336-517, above the cutoff of 104 (Lee et al., 2020a). Standard errors clustered
by exporter-importer pairs are in parentheses. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.

Manufactured Goods High-Value Waste Low-Value Waste
OLS FS 2SLS OLS FS 2SLS OLS FS 2SLS

Trade Barrier -3.936*** -14.59*** -4.209*** -15.39*** -4.523*** -19.91***
(0.206) (0.651) (0.380) (0.851) (0.329) (0.989)

log(Distance) 0.126*** 0.118*** 0.114***
(0.006) (0.006) (0.005)

Exporter FE Y Y Y Y Y Y Y Y Y
Importer FE Y Y Y Y Y Y Y Y Y
R-squared 0.950 0.998 0.926 0.998 0.921 0.998
Observations 6,932 6932 6,932 2470 2,470 2,470 3,411 3,411 3411

Table A.4: Estimating Trade Elasticities with Trade Barrier= τ̂ 1
in

This table reports the results from estimation of Equation (16). Columns 1, 2 and 3 report the results
with bilateral manufactured good flows, Columns 4, 5, and 6 with bilateral high-value waste flows, and
Columns 7, 8, and 9 with bilateral low-value waste flows as the dependent variables. For each sector,
the first column reports the OLS estimates, the second column reports the first-stage estimates, and the
last one reports 2SLS estimates. See Section 5.1 for a discussion on the construction of measure of trade
barriers and the regression specification. In all three sectors, the test for weak instruments yields robust
F-statistics ranging from 354-575, above the cutoff of 104 (Lee et al., 2020a). Standard errors clustered
by exporter-importer pairs are in parentheses. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.

Manufactured Goods High-Value Waste Low-Value Waste
OLS FS 2SLS OLS FS 2SLS OLS FS 2SLS

Trade Barrier -2.322*** -9.695*** -2.555*** -9.894*** -2.848*** -13.16***
(0.132) (0.423) (0.228) (0.534) (0.201) (0.640)

log(Distance) 0.189*** 0.184*** 0.172***
(0.008) (0.010) (0.008)

Exporter FE Y Y Y Y Y Y Y Y Y
Importer FE Y Y Y Y Y Y Y Y Y
R-squared 0.949 0.995 0.925 0.995 0.921 0.995
Observations 6,932 6932 6,932 2,470 2470 2,470 3,411 3411 3,411
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Table A.5: Goodness of Fit-Openness by GDP per capita and GDP

This table shows the estimated slopes from OLS regressions of openness (Exports+ Imports)/GDP on
log(GDP/capita) in Panel A and on log(GDP ) in Panel B, for the three sectors. The second column is
for actual flows while the third is for the simulated flows at estimated parameter values for the model.
Standard errors are in parentheses. Significance codes: *** p<0.01, ** p<0.05, * p<0.1.

Sector Data Model

Panel A: Openness on log(GDP/capita)
Manufactured Goods 0.063∗(0.036) 0.049(0.030)
High-Value Waste 0.0002∗∗(0.0001) 0.0002(0.0001)
Low-Value Waste 0.001(0.002) 0.0004(0.002)

Panel B: Openness on log(GDP)
Manufactured Goods −0.038(0.027) −0.043∗(0.022)
High-Value Waste −0.0002(0.0001) −0.0002∗(0.0001)
Low-Value Waste −0.004∗∗∗(0.001) −0.003∗∗∗(0.001)
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A Recycled Good as an Intermediate Input
I consider Cobb-Douglas form across labor, two types of waste, and the recycled good as
inputs to manufacturing production. Here, the unit cost of production is:

pj(νm) =
wβ
′

j p
1−β′
rj

zj(νm) , (21)

where β′ is the combined share of labor and two types of waste in the production of the
manufactured good. As the recycled product now serves as an input to manufacturing,
the market clearing condition of the recycled good is given by:

∑
s={h,l}

Xsj = (1− β′)
∑
i

Xmji, ∀j. (22)

Finally, as the households consume only manufactured goods, their preferences assume
the following CES form:

Uj = Qj,

where

Qj =
 ∫ 1

0
qj(νm)

σm−1
σm dνm


σm
σm−1

, σm > 1,

and the fraction of income allocated to manufactured goods in country j is:

Xmj = wjL̄j. (23)

As in Section 5.2, I calibrate share of labor to be 0.973 assuming the share of expenditure
on recycled product to be 0.007 and the share of expenditure on waste-management to
be 0.02. Therefore, I set the share of labor and waste-management, β′ = 0.993.

B Externality of Waste Trade
Households also experience a negative externality due to the portion of two types of
waste—high-value and low-value—that is disposed of domestically. The utility function
for a household in the country j takes the following nested CES form:

Uj =
(
Qα
jC

1−α
j

)ρ
− µ

(∑
s={h,l}Wsj

)ρ
,
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where

Qj =
 ∫ 1

0
qj(νm)

σm−1
σm dνm


σm
σm−1

, σm > 1.

The term Qj represents the composite of manufactured goods, where qj(νm) denotes the
consumption of good νm, and Cj denotes the consumption of the recycled good. The
substitution parameter ρ = (σ − 1)/σ represents ease of substitution across goods and
the externality, and µ is the weight on externality in the utility.

The term −µ(∑sWsj)ρ denotes the disutility from high-value and low-value waste
that is disposed domestically. Each externality term:

Wsj = χsjξs
∑
i

Xsij, s ∈ {h, l}, (24)

is the product of the fraction of waste disposed, χsj, and the total volume of waste
accumulated via domestic production or imports, ξs

∑N
i=1Xsij. Here, Xsij is the dollar

value of imports of waste type s from country i. The term ξs is a conversion factor that
converts the dollar value of waste to tonnes (calculated using trade data for 2015). I
model the externality as a pure externality, which households take as given while making
consumption decisions. The externality also does not influence the decisions of private
firms about how much waste to trade. I rely on the existing literature to quantify the
substitutability across goods and bads and the weight on the externality, summarized by
the parameters ρ and µ, respectively. Thus, I calibrate the parameters ρ and µ so that
households are willing to pay the economic valuation of the externality provided by the
literature to avoid one additional tonne of waste disposal.

Next, I discuss the implication behind Equation (24) that accounts for the disutility
due to the externality from waste disposal. In reality, externalities from waste trade
do not affect trading decisions for two main reasons. First, most developing countries
have unregulated and informal recycling operations, which provide limited safeguards
to protect against the ill effects on workers’ health or the local environment (Vidal,
2014). Second, non-recyclable waste is often exported under the guise of recyclable waste
(Gutierrez, 2016).21 Imported recyclable waste that is commingled or soiled with non-
recyclable waste is more difficult, or even impossible, to suitably reprocess by recycling
firms. Waste that cannot be appropriately recycled inevitably generates a negative exter-
nality via disposal. The term in Equation (24) captures the externality from the portion
of local waste, whether from local sources or imports, that countries end up having to

21 A variety of reasons contribute to illegal exports of non-recyclables as recyclables ranging from
varying definitions of non-recyclables across countries to coercion on lower-income countries due to the
unequal nature of their relationship with the rich.
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dispose of. Now, the social welfare of a country is given by its indirect utility:

Vj =
αα(1− α)1−α Yj

Pj

ρ − µ(∑
s

Wsj

)ρ
, (25)

B.1 Counterfactual Calculations

To measure the effect of a policy change on social welfare, I calculate the empirical
analogue of the equivalent variation. The equivalent variation for country j is:

EVj = wjL̄j


 Ŷj
P̂j

ρ − µ(∑sW
′
sj)ρ − µ(∑sWsj)ρ

(αα(1− α)1−αYj/Pj)ρ


1/ρ

− 1
. (26)

To ensure that the externality costs are driven by changes in volume of traded waste and
not its value, I keep the prices of high-value and low-value waste in the counterfactual
constant. To do this, I convert the waste disposed domestically under the counterfactual,
W ′
sj = χsjξs

∑
iX
′
sij, back to its value in current prices by multiplying it with the price

ratio Psj/P ′sj.
To measure the disposal intensity, χsj, I require data on recycling rates for high-value

and low-value waste. I obtain the recycling rate data for mixed waste for the countries
in my sample from Kaza et al. (2018), predominantly from the 2012-2017 time period.
I find that the recycling rate, in percentage terms, is positively correlated with the log
of income, with a slope coefficient of 3.26 (s.e. = 1.04). Thus, a 1% increase in GDP is
associated with a 0.03 percentage point (p.p.) increase in the recycling rate, suggesting
that higher-income countries are better at recycling waste in the domestic economy.

To infer the recycling rates by type of waste, I supplement the overall recycling rate
data with recycling rates for different materials in the U.S. for 2015 from United States
Environmental Protection Agency (2020). Specifically, I use data on recycling rates for
“Paper and Paperboard”, “Ferrous Metals”, “Aluminum”, “Non-ferrous metals”, “Plas-
tics”, “Lead-Acid Batteries”, “Rubber and Leather”, “Textiles”, and “Wood”. I assign
each of these categories to either high-value waste or low-value waste by matching the
classification in trade data.22 Finally, to obtain an estimate of the recycling rates for
the two types of waste in the U.S., I calculate the imports-value weighted average of
recycling rates for the materials in each type. Following this procedure, I calculate the
average recycling rates for high-value waste and low-value waste to be 52.56% and 33.17%,

22 For example, “Textiles" maps to Yarn. Due to the lack of break-up of recycling rates for different
metals, I assign the entire “Non-Ferrous Metals" category to high-value waste since 75% of these metals
are part of high-value waste in trade data. Similarly, even though rubber is low-value and leather is
high-value waste in trade data, I assign the entire category of “Rubber and Leather" to high-value waste.
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respectively.23 The higher recycling rate for high-value waste is consistent with the argu-
ment that recycling high-value waste likely results in greater value-added to the economy
than recycling low-value waste. Lastly, for other countries in my sample, I extrapolate
the recycling rates by type of waste to be proportional to the overall recycling rates.24

Figure A.8 shows the distribution of recycling rates for both types of waste in my sample.

Figure A.8: Recycling Rates by Type of Waste

This figure shows the extrapolated recycling rates for high- and low-value waste for the 91 countries in
my sample. The “grey" dots represent the recycling rates for mixed waste from Kaza et al. (2018). The
“orange" dots represent the recycling rates for high-value waste extrapolated to be proportional to overall
recycling rates (grey dots) using the recycling rates for different materials under high-value waste for the
USA from United States Environmental Protection Agency (2020). The “blue” dots are the analogous
extrapolated recycling rates for low-value waste. See Appendix B.1 for details.

B.2 Calibration of the Externality Parameters

To quantify the externality costs from waste disposal, I calibrate the parameters ρ and
µ, which represent the substitutability across goods and bads and the weight on the
externality in the utility, respectively. I rely on the existing estimates of external costs
of waste from Bond et al. (2020) and McKinsey (2016) to measure ρ and µ. Bond
et al. (2020) quantify the external costs from plastic waste to be $1000/tonne from four

23 The average recycling rates for high- and low-value waste are robust to assigning “Rubber and
Leather" to low-value waste instead—53.4% and 31.8%, respectively. My counterfactual results are also
robust to the extreme check of decreasing recycling rates for the lowest income group by 50%.

24 I convert all rates to a scale of [0,∞) using the transformation x
100−x before calculating the pro-

portional rates for the two types of waste. In this way, the extrapolated rates asymptote above at
100.
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aspects, namely, carbon dioxide emissions, air pollution, collection and sorting costs, and
ocean clean-up costs.25 The fact that the European Union tax on non-recycled plastic
waste levied on member countries starting on January 1, 2021 is equal to $1000/tonne
provides support in favor of using this figure in my calculations. Even though plastic
waste comprises only 10% of the low-value waste in my sample, it is rampant in all
activities of an economy. Thus, I use this estimate as the value the European Union
places on disposal of mixed-waste. The McKinsey (2016) study calculates the external
costs from mixed waste for five Southeast Asian countries to be $375/tonne.26

To formally calibrate the two utility parameters, I totally differentiate the indirect
utility function in Equation (3). Setting dVj = 0, I obtain:

dYj/Yj
d
∑
sWsj/

∑
sWsj

= µ(∑sWsj)ρ
(αα(1− α)1−αYj/Pj)ρ

Using current data on income and waste disposal and the social marginal cost esti-
mates in the aforementioned studies, I solve for two equations in two unknowns, ρ and
µ. Specifically, I solve for µ and ρ such that the willingness-to-pay for a EU country
to avoid one additional tonne of waste disposal is $1000, and that for a SEA country is
$375. I find µ = 0.0067 while my estimate of ρ = 0.1225 translates to an elasticity of
substitution, σ > 1, which is larger than what the elasticity of substitution would have
been in a Cobb-Douglas formulation across goods and bads. The greater ease of substi-
tution means that for each additional tonne of waste disposal, the marginal increase in
real income required to keep the households at the same level of utility is decreasing with
the volume of disposal.

B.3 Alternative Functional Form

First, I test the robustness of my environmental cost estimates to a Cobb-Douglas
formulation of the utility across the composite of manufactured goods, recycled product,
and the externality, based on Shapiro (2016). The indirect utility for the alternative
formulation is as follows:27

Vj = αα(1− α)1−α × Yj
Pj
× 1

1 +∑
sW

2
sj

, (27)

25 Bond et al. (2020) include the collection and sorting costs in the external costs of plastics waste
because much of the plastic waste stream is not collected and sorted. Thus, they assume the collection
and sorting to be a part of unaccounted externality from disposal.

26 The five Southeast Asian countries are China, Indonesia, the Philippines, Thailand, and Vietnam.
27 To measure the effect of a policy change, I calculate the empirical analogues of the equivalent

variation: EVj = wjL̄j(V̂j − 1).
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The term 1
1+
∑

s
W 2
sj

denotes the disutility from waste that is disposed domestically. Each

waste-type-specific externality term, Wsj = µsjχsjξs
∑
i
Xsij
wjL̄j

, is the product of an exter-
nality parameter, µsj, and the volume of waste disposed domestically, χsjξs

∑
i
Xsij
wjL̄j

. Here,
Xsij is the dollar value of imports of waste type s from country i, which is weighted by
total income, wjL̄j. The externality parameter µsj captures the social marginal cost of
waste disposal and is allowed to vary by type of waste, s, and country, j. The quadratic
form summarizes the exponential effect of waste disposal on the surrounding environment
and the effect of the environment on utility. To keep the utility finite for cases with no
disposal, I add one to the denominator.28

To quantify the externality costs from waste disposal, I calibrate the parameter µsj,
to represent the social marginal cost of disposal of waste type s. Formally, I write the
indirect utility function in money-metric terms, ej(v, P, {Ws}s=h,l) = VnPn(1 + ∑

sW
2
sj).

Then, I differentiate the money-metric utility function with respect to the volume of
waste disposed, χsξs

∑
iXsij, and choose the value of µsj so that the marginal cost of

disposed waste equals the economic valuation of the externality provided in the literature.
Specifically, I choose µsj so that one additional tonne of disposed waste, s, decreases the
money-metric utility of country j by a dollar-value proportional to its EPI.29 As a result,
the parameter µsj is isomorphic to the social marginal cost of disposed waste type s in
country j. While the disposal intensity is decreasing in the income level of a country,
the externality cost per unit of waste is increasing in income level. Figure A.9 shows the
social marginal cost of waste in dollars per tonne. Rich countries, mainly in the European
and North American regions, have the highest social marginal costs of waste disposal,
while lower-income countries such as India and China have the lowest social marginal
costs of waste disposal.

28 My results are robust to adding another small number, 0.01, instead.
29 I solve the following two equations in two unknowns:

log(1000) = β0 + β1EPIEU ,

log(375) = β0 + β1EPISEA,

where EPIEU and EPISEA are the average environmental performance indices for the EU and the
relevant Southeast Asian (SEA) countries. I use the values of β0 and β1 to extrapolate economic valuation
for the countries in my sample.
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Figure A.9: Social Marginal Cost of Waste ($/tonne)

This figure shows the extrapolated social marginal costs of waste disposal for each country in my sample.
I use the values of $1000/tonne from Bond et al. (2020) and $375/tonne from McKinsey (2016) for
the European Union and Southeast Asia, respectively, to extrapolate the social marginal costs to the
countries in my sample based on their Environmental Performance Indices. Appendix B.3 describes the
extrapolation methodology in detail.
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