
Welfare Effects of International Trade in Waste∗

Prakrati Thakur†

University of Illinois

Please Click Here for the Latest Version

Abstract

I quantify the welfare effects of international trade in waste. I build a structural gravity
model in which the generation of waste, including recyclables, is expressed as a byprod-
uct of manufacturing. My estimates reveal that low-value waste is more sensitive to
trade barriers than high-value waste, while richer countries import a greater share of
high-value waste than low-value waste. I find that existing patterns of waste trade make
countries of all income levels better off. Trade in low-value waste, which creates large
negative externalities relative to its private value, makes low-income countries better
off, while middle-income countries are worse off. I estimate that China’s 2018 ban on
low-value waste imports made China and several lower-income countries better off. De-
pending on the type of waste trade banned, manufacturing production in countries is
also differentially affected. While a high-value waste trade ban reduces manufacturing
output for rich countries, a low-value waste trade ban reduces the output for lower-
income countries.
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International trade in waste, including recyclables, has experienced considerable growth
over the past three decades, with a five-fold increase in its trading volume from 33.9 million
tons in 1988 to 156.7 million tons in 2015. However, international trade in waste is contentious
among countries because its economic and environmental ramifications on all trading part-
ners are unclear. Although trade in waste has benefits similar to trade in other commodities
such as lower prices of recycled materials, increased employment opportunities, and addi-
tional income, it also creates local negative externalities in importing countries via the health
and environmental hazards posed by waste (Kirby, 1994). Over the years, health and envi-
ronmental considerations have led countries to put a range of controls on waste trade, from
multilateral agreements, such as the Basel Convention implemented in 1992, to the unilateral
ban on imports of select waste types by China in 2018. However, little evidence quantifies
the effects of such waste trade controls on welfare, waste generation, and the primary source
of waste generation, manufacturing production.

I quantify the welfare effects of international trade in waste. Specifically, I estimate the
gross gains—benefits due to changes in real income—and compare them with the environ-
mental costs of waste trade across countries. To this end, I extend the Ricardian model of
trade in manufactured goods by Eaton and Kortum (2002) by adding the generation of waste
as a byproduct of manufacturing. To my knowledge, this is the first paper to formulate a
structural gravity model that provides theoretical microfoundations for waste generation and
waste flows. To assess heterogeneity in welfare by type of waste, I decompose the waste flows
into high- and low-value waste. Empirically, richer countries import a higher fraction of high-
value waste than low-value waste. I interpret this finding as non-homothetic production in a
country’s recycling sector that uses the two types of waste to produce a recycled good. Apart
from the nature of their trade flows, the two types of waste also differ in ease of recycling.
High-value waste, which mainly comprises precious metals and yarn, is easier to recycle than
low-value waste, which comprises mixed waste, including plastics. Thus, decomposing waste
flows aids in quantifying the heterogeneity by waste type not only in the gains but also in
the externality costs due to disposal from waste trade.

The size of gains to trade crucially hinges on the elasticity of the trade value of manu-
factured goods, high-value waste, and low-value waste with respect to trade barriers. To my
knowledge, this is also the first paper to estimate the trade elasticities for international waste
flows. I estimate these trade elasticities using geographic barrier, distance, as an instrument
for a measure of trade barriers constructed using price data. My estimates reveal that low-
value waste is more sensitive to trade barriers than high-value waste and manufactured goods.
Specifically, I find that a 1% decrease in trade costs causes a 7.3% increase in manufactured
goods, a 7.3% increase in high-value waste, and a 9.8% increase in low-value waste flows. To
quantify the externality of waste in monetary terms, I rely on existing estimates of the social
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marginal cost of waste disposal (Bond et al., 2020; McKinsey, 2016) and extrapolate them to
the countries in my sample. To estimate the other key parameters of the model, I simulate
the world economy using cross-sectional trade data for 91 countries, representing over 90%
of world trade in the three sectors in 2015.

A third contribution of my paper is to study a variety of counterfactual simulations to
quantify the welfare consequences of waste trade. My results show that the existing patterns
of waste trade make countries of all income levels better off even after accounting for negative
externalities of waste disposal. The global gains to waste trade comprise 0.43% of gains to all
trade even though waste trade accounts for only 0.07% of overall trade by value. Thus, per
unit of trade value, waste trade generates more than five times the welfare gains of regular
trade. Differentiating the gains to waste trade by income level, I find that poor countries have
the largest gains, at 0.021% of GDP. Further, allowing waste trade decreases the environmen-
tal costs for all income levels, but for the poor, it does so by the largest amount of 0.024% of
GDP. The decline in environmental costs reflects the scale and compositional changes in the
generation of the two types of waste. As countries gain access to import opportunities from
opening up to trade in waste, their recycling sector shifts its expenditure toward high-value
waste and away from low-value waste. Thus, the scale of generating low-value waste, which
has higher disposal intensity and creates high externality costs, counterintuitively decreases
even as more options for dealing with waste become available through the waste trade.

I also study heterogeneity in welfare by type of waste. I find that the high-value waste
trade creates gains and environmental costs qualitatively similar to the overall waste trade.
Thus, countries of all income levels are better off due to trade in high-value waste. However,
rich countries, which both specialize in and disproportionately import high-value waste, re-
alize the largest net benefits of 0.049% of GDP. In contrast, low-value waste trade harms the
primary importers of this type, i.e., middle-income countries. Even though poor countries
are also primary importers of low-value waste, middle-income countries place a higher social
marginal cost on waste disposal than low-income countries.

Finally, a fourth contribution is to examine the welfare implications of recent policies reg-
ulating waste trade, beginning with China’s 2018 ban on select waste imports. China’s ban on
low-value waste imports has qualitatively similar welfare effects to a ban on all low-value waste
trade, albeit with smaller magnitudes. This policy helps China on both fronts—by increasing
gross benefits and decreasing environmental costs—while also benefiting other lower-income
countries such as India and the Philippines. Similar to an overall low-value waste trade
ban, the scale of low-value waste generation declines, making lower-income countries better
off. Regulations on waste trade differentially affect manufacturing production in countries
depending the type of waste trade that is banned. I find that banning trade in all or only
high-value waste reduces manufacturing output by high-income countries, while increasing
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output by middle-income and poor countries. In contrast, only banning trade in low-value

waste decreases the manufacturing output of both poor and rich countries. Although the

e�ects of waste trade bans on manufacturing production across income levels are small, they

indicate that trade bans on the type of waste a country specializes in have the potential to

adversely a�ect its manufacturing sector.

This paper contributes to studies on factors determining international trade in waste by

providing theoretical microfoundations for the generation of waste and international waste


ows. Papers in this line of research either use a reduced-form approach to test for the

waste havene�ects, where waste is relocated to lower environmental regulation countries

(Baggs, 2009; Kellenberg, 2012), or employ a Heckscher-Ohlin framework to conclude that

countries su�ciently abundant in land import more waste assuming that land�ll disposal is

its �nal destination (Copeland, 1991). However, the economic incentives to import waste are,

most likely, created through demand for recycled waste in local manufacturing production.

Hence, in my framework, I abstract away from land-�lling to create demand for waste by

a country in its recycling sector for \productive" reasons rather than for �nal disposal. To

my knowledge, the only paper studying the e�ects of waste trade policies on waste trade is

Kellenberg and Levinson (2014), who estimate the e�ects of the Basel Convention using a

di�erence-in-di�erences approach. My use of a structural framework allows me to incorporate

general equilibrium forces, to consider a richer set of counterfactuals and to explicitly draw

welfare conclusions that would not be possible with a reduced-form framework.

My paper also contributes to the literature studying the welfare e�ects of trade in goods us-

ing a structural gravity framework by building in environmental damages of an oft-overlooked

component of international trade: trade in \bads" and, in particular, trade in waste.2 Shapiro

(2016) also builds a structural gravity model estimated to quantify the e�ects of international

trade on CO2 emissions, which depend directly on equilibrium production and consumption

decisions. By contrast, I extend the Ricardian formulation by Eaton and Kortum (2002) by

allowing the generation of waste to be endogenous to manufacturing. My formulation allows

for a rich interaction between trade in manufactured goods, trade in waste, and the overall

scales of production that plays out in the counterfactual simulations used to capture welfare

e�ects. Using the structural gravity framework also allows comparison of gains to trade with

those obtained from several richer Ricardian models. Methodologically, I contribute to this

literature by proposing a new formulation to quantify environmental costs from waste|a

nested CES formulation across goods and externality terms|and an analytically straightfor-

2Papers in this line of research have derived gravity equations under a variety of theoretical microfoun-

dations, including perfect competition (Eaton and Kortum, 2002), Bertrand competition (Bernard et al.,

2003), monopolistic competition with homogeneous �rms (Krugman, 1980), and monopolistic competition

with �rm-level heterogeneity (Chaney, 2008; Arkolakis, 2010; Arkolakis et al., 2008; Eaton et al., 2011).
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ward approach to estimating trade costs|calculating \wedges" that match simulated 
ows

with actual 
ows.

The paper is organized as follows: Section 1 presents the data and the patterns in waste

trade. Section 2 presents stylized facts related to aggregate waste 
ows and di�erent types

of waste. Section 3 presents the theoretical framework and the strategy for counterfactual

calculations. Section 4 presents the estimation strategy for model parameters and their

estimates. Section 5 presents the results from the counterfactuals and Section 6 concludes.

1 Data

With the goal of studying the e�ects of waste trade on welfare and manufacturing pro-

duction in a static framework, I use cross-sectional bilateral trade data for waste and man-

ufactured goods. I use the data �rst to describe empirical facts and then to estimate the

structural model. Section 1.1 describes the trade data, while Section 1.2 describes the other

variables used to gather the stylized facts. Section 1.3 presents the patterns of waste trade

in the raw data.

1.1 Trade Data

Since the focus of this paper is on waste trade, I augment the data used in prior structural

trade work with data on bilateral waste trade from the UN Comtrade database for 2015. To

identify the categories of waste, I use the six-digit Harmonized System (HS) categories for

which the commodity description primarily uses the keywordswaste, scrap, or residual, fol-

lowing Kellenberg (2012). Table A.1 lists the 62 six-digit HS categories of waste in detail. For

each waste category, the database provides the value in U.S. dollars and weight in kilograms

(kg) of bilateral 
ows among 220 countries and territories.

Since industrial waste represents 94-97% of global waste (Liboiron, 2016; Kaza et al.,

2018) and the categories of traded waste in my sample are primarily industrial in nature, I

also obtain data on bilateral trade in manufactured goods. I use data on bilateral trade for

codes 1-8, most closely related to manufactured goods, under SITC.Rev4 for 233 countries

and territories in U.S. dollar terms.3

3The 8 SITC.Rev4 codes broadly represent the following commodities: beverages and tobacco, crude

materials, mineral fuels, lubricants and related materials, animal and vegetable oils, fats and waxes, chem-

icals and related products, manufactured goods, machinery and transport equipment, and miscellaneous

manufactured articles.
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1.2 Environmental Regulation, Income, and Geographic Barriers

I use several variables to gather stylized facts from the data. To capture the level of

environmental regulation in a country, I use data on the Environmental Performance Index

(EPI) for 2016 (Hsu et al., 2016). The EPI quanti�es the environmental performance of

a country's policies by combining di�erent indicators on the protection of human health

and ecosystem vitality. Although the EPI is an imperfect measure of the stringency of

environmental policies of a country, it provides data on a comprehensive list of countries.

Starting in 2006, the EPI Report is published every other year, so the EPIs for 2015 were

unavailable. Thus, I use 2016 EPIs as a proxy for the stringency of environmental regulation

in each country. Other variables of interest include income levels, wage rate, and output

per unit of land. Thus, I obtain data on gross domestic product (GDP), GDP per capita,

used as a proxy for wage rate, and land area from the World Development Indicators (WDI)

database. The GDP and GDP per capita are measured in U. S. dollar terms, while land area

is measured in square kilometers (sq. km).

I also use data on geographic barriers, trade agreements, and treaties to serve as a proxy for

barriers to trade. The measure of distance, in kilometers, is constructed using the geographic

coordinates of most important cities in a country by Mayer and Zignago (2011). Their

data set also provides dummies for contiguity and common o�cial language between pairs of

countries that I use. I also construct dummies for pairs of countries that are part of a free

trade agreement (FTA) using data from the World Trade Organization (WTO).4

1.3 Patterns in Waste Trade

To begin, I examine patterns in total waste exports and imports across the world. Fig-

ure A.1 displays the value of total waste exports as a share of GDP, while Figure A.2 displays

the value of total waste imports as a share of GDP across countries. As a share of GDP,

high-income countries, mainly in the European and North American regions, are the largest

exporters of waste. In contrast, as a share of GDP, the largest importers of waste comprise

not only low-income countries such as Pakistan, Turkey, and Vietnam but also high-income

countries such as Belgium, Finland, and South Korea. Thus, the pattern of aggregate waste


ows reveals that waste exports primarily come from rich countries, while countries of all

income levels|rich to poor|are among the major importers of waste.

Next, I disaggregate waste 
ows into two types of waste|high-value and low-value|based

on value-to-weight ratios of the 62 categories of waste. To construct the value-to-weight ratios,

I calculate the ratio of the average dollar-value and average weight of trade in each category.

4To construct the FTA dummies, I utilize data on trade agreements that are listed as best known by the

WTO: ASEAN, COMESA, EFTA, EU, MERCOSUR, and NAFTA.
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Then, I divide the 62 categories into two types of waste: high-value, which corresponds to the

top tercile, and low-value, which corresponds to the bottom two terciles of value-to-weight

ratios (See Figure A.3). Figure 1 shows that while 75% of the materials in high-value waste

are metallic in nature, low-value waste is a mix of di�erent materials, including plastics and

paper.5

Table 1 presents summary statistics on the two types of waste. Panel A shows that, on

average, countries exporting high-value waste have similar levels of GDP per capita, GDP,

and EPI, as countries exporting low-value waste. In contrast, countries importing high-value

waste, on average, have higher GDP per capita, GDP, and EPI than countries importing low-

value waste. Thus, the statistics reveal that importers of low-value waste, on average, have

lower incomes, lower incomes per capita, and lower levels of environmental regulation than

importers of high-value waste. Figures 2 and 3 depict a pattern that is consistent with these

�ndings. As a share of GDP, high-income countries in the European and North American

regions are the major importers of high-value waste. However, as a share of GDP, the major

importers of low-value waste are primarily lower-income countries, such as Pakistan, Turkey,

and Vietnam. Finally, the table shows that on average, a tonne of high-value waste is valued

at $2631.39, while a tonne of low-value waste is valued at $264.82.

2 Stylized Facts

In this section, I present a series of stylized facts on international trade in waste to motivate

the gravity setup of the model and the welfare calculations. I document these stylized facts

based on reduced-form gravity regressions, where the value of bilateral trade from countryi

to j , denoted byX ij , is directly proportional to income levels,Yi and Yj , and inversely related

to trade barriers, � ij :

X ij = exp ( � 0 + � 1 logYi + � 2 logYj + � 3 log� ij + � 4Z i + � 5Z j ) � � ij : (1)

The term � ij comprises geographic barrier variables: distance, contiguity, and common lan-

guage.6 The vector Z i includes logged exporter-level controls, exporter's EPI and GDP per

unit of land, while Z j includes analogous importer-level controls. Finally,� ij is the error term

with E[� ij jYi ; Yj ; � ij ; Z i ; Z j ] = 1.

5Although metals and yarn are a part of both high- and low-value waste, the nature of the categories

within these two broad classes is di�erent. The metals and yarn that comprise high-value waste are chie
y

precious objects, such as gold and silk.
6In principle, rati�cation of the Basel Convention could be an important determinant of waste trade. In

practice, by 2015, the vast majority of countries rati�ed the Basel Convention, with the notable exception of

the United States. Thus, this variable has little meaningful variation, and I do not include it in the analysis.
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To estimate Equation (1), I use the Poisson pseudo-maximum likelihood (PPML) estima-

tion technique, which yields consistent and e�cient estimates (Silva and Tenreyro, 2006).7

To account for unobservable heterogeneity at the country level, I also estimate a speci�cation

with exporter and importer �xed e�ects, � i and � j , respectively.8 Further, to study the choice

between high-value and low-value waste across countries, I estimate a speci�cation with the

ratio of bilateral high-value to total waste trade as the dependent variable. Due to potential

correlation between observations of the same trading partners, I cluster standard errors at

the exporter-importer level for all speci�cations.

2.1 Aggregate Waste Flows

I begin by discussing the stylized facts on aggregate waste 
ows.

Fact 1: Bilateral waste 
ows across countries are positively associated with exporters' and

importers' income levels.

Table 2 reports the elasticity of aggregate bilateral waste 
ows with respect to exporter's

and importer's incomes. I �nd that the elasticity of the aggregate value of bilateral waste

trade with respect to exporters' GDP is 0.552 and with respect to importers' GDP is 1.199,

both signi�cant at the 1% level. These results indicate that higher-income countries have

larger overall production and consumption activity than lower-income countries. Therefore,

they generate and export larger quantities of waste. Furthermore, higher-income countries

likely have a greater capacity to recycle waste and a greater demand for secondary inputs in

their manufacturing sector and, consequently, engage in more waste imports. I also �nd that

waste trade is more sensitive to importer's income than to exporter's income. In contrast,

for manufactured goods, trade is almost equally sensitive to both exporter's and importer's

income levels, with elasticities in the 0.84-0.89 range (See Table A.2). In addition, waste

7I prefer the PPML method for two reasons. First, in the presence of heteroscedasticity, the mean of

the log of the error term depends on higher-order moments of the error term, so it is not independent of

the covariates. Thus, estimation of the log-linearized gravity equation via ordinary least squares (OLS)

yields inconsistent estimates. However, the PPML estimator performs well under di�erent speci�cations of

heteroscedasticity. Second, bilateral trade data tend to have many zero observations. In my sample, 86-91%

of observations across aggregate, high-value, and low-value waste 
ows are zero. Trade observations that are

small, such as for distant country pairs or smaller countries, are more likely to su�er from a rounding error

due to being recorded as zero during data collection. This rounding error is based on values of regressors.

Thus, the zero observations in the dependent variable not only heavily reduce the sample size but also lead

to inconsistent estimates while estimating the log-linearized Equation (1) via OLS. The PPML estimator is

robust to this form of measurement error.
8Because the inclusion of country-level �xed e�ects absorbs any variation at that level, coe�cients of the

variables part of the vectors Z i and Z j can no longer be estimated.
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trade is more sensitive to importer's income level and less sensitive to exporter's income level

than trade in manufactured goods.

Fact 2: Bilateral waste 
ows across countries are inversely related to trade barriers.

Table 2 shows that waste trade and distance have an inverse relationship. Speci�cally, I

�nd that the magnitude of the negative elasticity of waste trade with respect to distance is

0.681-0.911 and signi�cant at the 1% level. In contrast, the negative elasticity of manufac-

tured goods trade is 0.457-0.653, suggesting that waste trade is more sensitive to geographic

barriers than manufactured goods trade (See Table A.2). Moreover, the coe�cient on the

geographic barrier variable, contiguity, is positive and signi�cant at the 1% level. If two

countries are contiguous, they trade 151-177% more in waste than noncontiguous country

pairs, as opposed to manufactured goods, where they trade 68-92% more.9 Since lesser bene-

�ts accrue from importing waste than manufactured goods for a country, waste trade is more

sensitive to trade barriers. Lastly, Table 2 shows a positive, albeit not statistically signi�cant,

correlation between waste 
ows and the common language dummy.

Turning to the e�ects of environmental regulations, I �nd a positive elasticity of waste

trade with respect to exporter's EPI, with magnitude 2.398, and a negative elasticity with

respect to importer's EPI, with magnitude 3.880, both signi�cant at the 1% level. Arguably,

a country with greater environmental regulation �nds it harder to dispose or recycle negative

externality-generating waste and thus exports more and imports less of it. This �nding

suggests that countries with stricter environmental regulations that care more about the

negative externality due to waste seek external avenues for waste management by exporting

it to other countries with lax environmental regulations (Kellenberg, 2012).

2.2 Heterogeneity by Type of Waste

In this subsection, I discuss the stylized facts on the two types of waste. I replace the

dollar-value of high-value and low-value waste 
ows as dependent variables while estimating

Equation (1). Table 2 shows that high-value and low-value waste 
ows qualitatively conform

with the empirical facts described for aggregate waste 
ows in Section 2.1. Next, I discuss

additional stylized facts on heterogeneity by type of waste.

Fact 3: Low-value waste is more sensitive to trade barriers than high-value waste.

9The coe�cient on Contiguity in waste trade regressions is in the range of 0.920-1.020. Since it is a

log-level regression, I calculate the marginal percentage change in the dependent variable as 100� (e� � 1),

where � is the coe�cient on Contiguity.
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Table 2 shows that the negative elasticity of low-value waste is larger in magnitude than

the elasticity of high-value waste with respect to distance. Speci�cally, in columns 3 and

5, the elasticity of high-value waste with respect to distance is -0.535 as opposed to -0.781

for low-value waste, and the elasticity of low-value waste statistically signi�cantly exceeds

that for high-value waste at the 5% level. Similarly, in models with exporter- and importer-

speci�c e�ects, in columns 4 and 6, the magnitude of the negative elasticity with respect to

distance for high-value waste, 0.728, is statistically signi�cantly smaller than that for low-

value waste, 1.055, at the 1% level. This �nding indicates greater bene�ts to importing

high-value waste than low-value waste, so trade in this type of waste is not as sensitive to

trade costs as low-value waste trade. The observed trade patterns appear to arise from di�er-

ences in waste-processing technology available in di�erent countries. Processing high-value

waste likely requires technology that is available in only a select set of high-income countries.

As a result, technological availability swamps trade costs in determining 
ows of high-value

waste. Conversely, trade costs swamp technological considerations while determining the di-

rection of low-value waste trade.

Fact 4: As income increases, a greater share of a country's waste imports is high-value waste.

To further understand the choice between importing the two types of waste by a country,

I estimate a speci�cation by replacing the ratio of high-value to total waste as the dependent

variable. Table 3 reveals that importer's income per capita is positively associated with the

fraction of spending on high-value waste in total waste imports. Speci�cally, the elasticity

of fraction spent on high-value waste imports with respect to an importer's GDP per capita

is 0.107 and signi�cant at the 1% level. Thus, richer countries allocate a greater share of

their expenditure to importing high-value waste than to importing low-value waste. Table

Table A.3 shows that this result is robust to variance-stabilizing logit and inverse hyperbolic

sine (IHS) transformations of the dependent variable.10

3 Model

I assume a world withN countries. Country j has �L j households, a manufacturing sector

producing a continuum of goods� m 2 [0; 1], a high-value waste management sector that

processes a continuum of waste materials� h 2 [0; 1] within high-value waste type,h, a low-

value waste management sector that processes a continuum of waste materials� l 2 [0; 1]

within low-value waste type, l , and a recycling sector. I describe the individual sectors,

10While the logit transformation converts ratio to the ( �1 ; + 1 ) scale, the IHS transformation prevents

loss of its zero observations.
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the relationships between them, and the modeling choices in greater detail in the rest of

this section. Throughout the paper, I denote the value of a commodity byX , the sector|

manufacturing, high-value waste management, or low-value waste management|using the

subscript s 2 f m; h; lg, a bilateral 
ow using two country subscripts such asij , and the

overall value of imports using one country subscript such asj .11

3.1 Preferences

Households consume two commodities, manufactured goods and the recycled good. To

model consumption choices, I assume Cobb-Douglas preferences across the composite of man-

ufactured goods and the recycled product. Thus, households allocate �xed fractions of their

expenditure to the two commodities. The composite of manufactured goods takes a constant

elasticity of substitution (CES) form with elasticity, � m . Households also experience a nega-

tive externality due to the portion of two types of waste|high-value and low-value|that is

disposed of domestically. The utility function for a household in countryj takes the form:

Uj =
Q�

j C1� �
j

1 +
P

s= f h;l g W 2
sj

;

where

Qj =

2

4
Z 1

0
qj (� m )

� m � 1
� m d� m

3

5

� m
� m � 1

; � m > 1:

The term Qj represents the composite of manufactured goods, whereqj (� m ) denotes the

consumption of good� m , and Cj denotes the consumption of the recycled good.

The term 1
1+

P
s= f h;l g

W 2
sj

denotes the disutility from high-value and low-value waste that is

disposed domestically. Each externality term:

Wsn = � sj � � sj � � s �
X

i

X sij

wj
�L j

; s 2 f h; lg; (2)

is the product of an externality parameter,� sj , the fraction of waste disposed,� sj , and the

total volume of waste accumulated via domestic production or imports,� s �
P N

i =1 (X sij =wj
�L j ).

Here, X sij is the dollar value of imports of waste types from country i , which is weighted

by total income, i.e., the product of wage rate,wj , and labor supply, �L j . The term � s is a

conversion factor that converts the dollar value of waste to tonnes (speci�c values provided

in Section 1.3). The parameter� sj represents the social marginal cost of waste disposal that

is allowed to vary by type of waste,s, and country, j .

Following Shapiro (2016), I model the externality as a pure externality, which households

11For instance, X mij represents the total value of exports from country i to j in sector m, while X hj

represents the total value of imports of country j in sector h.
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take as given while making consumption decisions. The externality also does not in
uence the

decisions of private �rms about how much waste to trade. The quadratic form summarizes

the exponential e�ect of waste disposal on the surrounding environment and the e�ect of the

environment on utility. To keep the utility �nite for cases with no disposal, I add one to the

denominator.12 I rely on the existing literature to quantify the willingness-to-pay to avoid

waste disposal, which is summarized by the parameters� sj ; 8s 2 f h; lg. Thus, I calibrate

parameter � sj so that one additional tonne of waste type,s, decreases the money-metric

utility by the economic valuation of the externality provided by the literature.

Each household inelastically supplies one unit of labor. Thus, the social welfare of a

country is given by its indirect utility:

Vj = � � (1 � � )1� � �
Yj

Pj
�

1
1 +

P
s W 2

sj
; (3)

which is the product of real income:

Yj

Pj
=

wj
�L j

P �
mj p1� �

rj
;

and the cost of externality. Here,Pj = P �
mj p1� �

rj , a composite of the price index for manufac-

tured goods,Pmj , and price of recycled product,prj , is the overall price index in countryj

(See Section 3.4.1).

3.2 Technology

Technology varies across goods, sectors, and countries. The e�ciency of producing good

� s in sectors 2 f m; h; lg in country j , zj (� s), is drawn from a Fr�echet distribution as in Eaton

and Kortum (2002). For any z, the measure of goods� s 2 [0; 1] such that the e�ciency of

producing these goodszj (� s) � z is given by the cumulative distribution function of a Fr�echet

random variable:

Fsj (z) = exp( � Tj z� � s );

where � s > 1 is the shape parameter andTj > 0 is the scale parameter. For a given� s, the

country-speci�c parameterTj determines the aggregate e�ciency or absolute advantage of a

country. The assumption that aggregate e�ciency,Tj , is the same across all sectors within

a country signi�es that a country that is generally e�cient at making goods in one sector is

also e�cient at making goods in another (Fieler, 2011).

The parameter � s, which varies by sector but not by country, governs the comparative

advantage not only across varietieswithin a sector but alsoacross sectors (Fieler, 2011).

12My results are robust to adding another small number, 0.01, instead.
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The variability in technological draws is inversely related to the parameter� s. A greater

variability in technological draws, i.e., a smaller� s, generates greater price dispersion and

thus a larger volume of trade in sectors. Thus, trade is more intense in goods of the sector

with a smaller � . This parameter also governs comparative advantage across sectors. The

aggregate e�ciency in sectors in country j is E(zj (� s)) / T
1

� s
j . Such a formulation drives

the distribution of e�ciencies in two sectors in two di�erent countries away from each other.

As a consequence, poor countries tend to specialize in sectors where� s is large, while the rich

specialize in sectors where� s is small.13

3.3 Production, Waste Management, and Recycling

The manufacturing sector produces a continuum of goods,� m 2 [0; 1]. The production

of each manufactured good also generates two byproducts, high-value and low-value waste.

For simplicity, I model the two types of waste as inputs to the production of manufacturing

output even though they are byproducts.14 Assuming constant returns to scale, the unit cost

of production is:

pj (� m ) =
w�

j u

hj u1� � � 


lj

zj (� m )
; (4)

wherepj (� m ) is the price of manufactured good� m , wj is the wage rate, andusj is the unit

price of collection of waste types, exogenously set by the government. The termzj (� m ) is

the e�ciency of producing good � m in country j . Since the output of each manufactured

good is increasing in its inputs, greater waste generation translates to more manufacturing

production. Further, abatement of waste generation is possible because the three inputs are

substitutable; a �rm can maintain constant output by increasing its labor input and reducing

its levels of waste generation. The revenue earned by the government via waste collection is

given as a lump-sum subsidy to the domestic recycling sector.

The two types of waste|high-value and low-value|collected by the government are

treated at a domestic waste-management sector that is speci�c to that kind of waste. Each

waste-management sector,s 2 f h; lg, sorts the waste into a continuum of materials,� s 2 [0; 1].

13The expected unit cost of delivering goods from countryi to country j relative to the expected unit cost of

procuring it domestically is E (pij ( � s ))
E (pjj ( � s )) =

�
T i
T j

� � 1
� s � sij w i

w j
, where � sij is the trade cost for exporting commodity

s from country i to j . For a large � s, the �rst term is small, so wages swamp technology in determining the

costs. Since wages are low for a poor country, it specializes in goods with a high� . For a small � , technology

swamps wages, so a high-income country, with high levels of aggregate e�ciency, specializes in a sector with

low � . See Fieler (2011) for details.
14Equivalently, one can model a joint production function of manufactured good, high-value waste, and

low-value waste and then invert it so that the two types of waste become inputs to manufacturing output

(See Copeland and Taylor (2004)). Instead, I simplify the production function to the regular Cobb-Douglas

form with three inputs, two of which are high- and low-value waste.
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The sector uses only one input, labor, to produce a sorted material. Assuming constant re-

turns to scale, the unit cost of sorted material,� s, within waste type s is:

pj (� s) =
wj

zj (� s)
; s 2 f h; lg (5)

where zj (� s) is the e�ciency of labor to produce the sorted material� s in country j . The

manufacturing and waste-management markets are competitive.

The recycling sector uses the materials in the two types of waste|high-value and low-

value|as inputs to produce a recycled product. The demand for material� s of waste type

s in country j is denoted by qj (� s). Following Fieler (2011), I employ a non-homothetic

production function for the recycling sector:

X

s2f h;l g

�

�
1

� s
s

� s

� s � 1

Z 1

0
qj (� s)

� s � 1
� s d� s

�

;

where� s > 0 is the weight, and� s > 1 governs the elasticity of substitution across varieties of

type s. I normalize
P

s2f h;l g �
1

� s = 1. The non-homothetic production function allows coun-

tries of di�erent levels of recycling output to allocate di�erent fractions of their expenditure

to the two types of waste.

Solving the cost-minimization problem of the recycling sector, I �nd that the ratio of

expenditure on high-value waste to low-value waste by this sector in countryj is:

X hj

X lj
= � � h � � l

j �
� hP1� � h

hj

� lP
1� � l
lj

(6)

wherePsj is the CES price index of waste types 2 f h; lg, and � j is the Lagrange multiplier

associated with the cost-minimization problem. The demand for each type increases with the

corresponding weight,� s, and decreases with the corresponding price index,Psj .

The term � � h � � l
j governs the ratio spent on the two types of wasteX h=X l . Although

the parameter � s is typically associated with elasticity of substitution, here, it also governs

the output elasticity of demand of inputs (Fieler, 2011). Since the shadow price of recycling

output, � j , is increasing in the total output of the recycling sector, under the assumption that

the elasticity of demand for high-value waste exceeds that for low-value waste,� h > � l , an

increase in total output leads to a greater expenditure share for high-value waste. Further, the

zero-pro�t condition of the recycling sector and the market-clearing condition of the recycled

good, presented in Section 3.4.3, show that� j is increasing in the income level of a country.

Thus, a higher-income country allocates a greater fraction of its expenditure to high-value

waste than low-value waste, consistent withFact 4 in Section 2.2. Essentially, I interpret the

�nding summarized asFact 4 as the assumption� h > � l in my model. Figure 4 depicts the
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aforementioned links between all the sectors within a country.

3.4 Trade

In my framework, trade is subject to \iceberg" trade costs. To deliver one unit of variety

� s of sectors to country j , country i needs to ship� sij > 1 units. I normalize � sjj = 1 8j ,

i.e., domestic shipping is free of trade barriers. The iceberg trade cost is allowed to vary by

sector, as denoted by subscripts.

3.4.1 Price Indices

With perfect competition, the total price of good� s from country i in country j is the

product of marginal cost of production and trade cost:

pij (� s) =
wi � sij

zi (� s)
: (7)

Assuming the two types of waste to be homogeneous for collection purposes, I setusi =

wi 8s 2 f h; lg in Equation (4). Hence, the termwi in Equation (7) represents the unit

cost of production across all sectors,s 2 f m; h; lg. A household in countryj buys from the

lowest-cost supplier. Thus, the price of good� s in country j is the lowest of the prices o�ered

by all exporters:

pj (� s) = min
k

f pkn (� s)g: (8)

The pricing rule combined with the technology distribution allows me to derive the price

indices for all sectors in each country. As in Eaton and Kortum (2002), the CES price index

for sectors in country j is:

Psj =

2

4 �

0

@� s + 1 � � s

� s

1

A

3

5

1
1� � s

� �
� 1

� s
sj ; (9)

where � is the gamma function, � sj =
P

i Ti (wn � sij )� � s , and � s + 1 > � s is the necessary

condition for a �nite solution. The parameter � sj summarizes how aggregate technologies,

input costs, and trade barriers from around the world govern prices in countryj . In the

presence of international trade, the e�ective technology in each country is enlarged due to

access to technology discounted by input costs and trade barriers from other countries, leading

to a decrease in prices (Eaton and Kortum, 2002).
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3.4.2 Trade Flows

In this section, I elaborate how the distribution of prices and the demand structure deter-

mine trade 
ows in the three sectors for manufactured goods, high-value waste, and low-value

waste. A typical household's problem yields the demand function for the composite of man-

ufactured goods. The fraction of income allocated to manufactured goods,m, in country j

is:

X mj = �w j
�L j : (10)

Similarly, if the wages wn and trade barriers � sij ; s 2 f h; lg, are given, then the dis-

tribution of technologies yields the distribution of prices in the two waste sectors. Given

the prices, solving the recycling sector's problem yields the demand functions for the two

inputs|high-value and low-value waste. The total expenditure on each type of waste is:

X sj = � � s
j � sP1� � s

sj ; s 2 f h; lg: (11)

Thus, the total expenditure of country j on commodities from countryi from sectors is the

product of the share spent oni 's goods or materials and the total expenditure on sectors by

country j :

X sij =
Ti (wi � sij )� � s

� sj
X sj ; s 2 f m; h; lg: (12)

3.4.3 Market Clearing

The Lagrange multiplier associated with the recycling sector's cost-minimization prob-

lem, � , is solved implicitly by combining the zero-pro�t condition and the market-clearing

condition of the recycled good:

X

s= f h;l g

X sj = (1 � � )wj
�L j ; 8j; (13)

which is a continuous and strictly increasing function of income,wj
�L j . Finally, equating

labor supply with labor demand yields theN labor market-clearing conditions:

�
X

i

X mji +
X

i

X hji +
X

i

X lji = wj
�L j : 8j (14)

This completes the statement of the model.

In summary, the world economy comprisesN countries, each with �L j households, ag-

gregate productivity Tj , and trade costs that vary by sector,� sij . Exports occur in three

sectors|manufacturing, high-value waste and low-value waste|denoted by s 2 f m; h; lg.

The parameter� governs the fraction of expenditure by a household on manufactured goods,
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m, and the recycled product; the parameters� s and � s govern the size and the income

elasticity of demand of the two types of waste,s 2 f h; lg; and the trade elasticities, � s,

govern the comparative advantage bothwithin and across sectors. Given wageswj , Equa-

tions (9) to (12) specify trade 
ows across the three sectors. The equilibrium is de�ned by

the shadow prices,� 2 �( N ), that solve recycled good market-clearing conditions (13), and

wages,w 2 �( N � 1), that solve labor market-clearing conditions (14). Given� h > � l ,

higher-income countries allocate greater shares of expenditures to high-value waste. Fur-

ther, lower-income countries specialize in goods with higher trade elasticities, i.e. low-value

waste. Finally, within a sector, the fraction of expenditure on goods from a particular country

depends on the technology discounted by input and trade costs.

Next, I discuss the implication behind Equation (2) that accounts for the disutility due

to the externality from waste disposal. In reality, externalities from waste trade do not a�ect

trading decisions for two main reasons. First, most developing countries have unregulated

and informal recycling operations, which provide limited safeguards to protect against the

ill e�ects on workers' health or the local environment (Vidal, 2014). Second, non-recyclable

waste is often exported under the guise of recyclable waste (Gutierrez, 2016).15 Imported

recyclable waste that is commingled or soiled with non-recyclable waste is more di�cult, or

even impossible, to suitably reprocess by recycling �rms. Waste that cannot be appropriately

recycled inevitably generates a negative externality via disposal. The term in Equation (2)

captures the externality from the portion of local waste, whether from local sources or imports,

that countries end up having to dispose of.

3.5 Counterfactual Calculations

To measure the e�ect of a policy change on social welfare, I calculate the empirical ana-

logue of the equivalent variation. The equivalent variation is the amount of money a country

would accept at old prices to end up at the new utility obtained through a policy change. Fol-

lowing Dekle et al. (2008) and Shapiro (2016), I reformulate the equivalent variation in terms

of a proportional change in indirect utility, V̂n = V 0
j =Vj .16 Thus, the equivalent variation for

country j is:

EVj = wj
�L j (V̂j � 1): (15)

15A variety of reasons contribute to illegal exports of non-recyclables as recyclables ranging from varying

de�nitions of non-recyclables across countries to coercion on lower-income countries due to the unequal nature

of their relationship with the rich.
16To calculate the proportional change in indirect utility, I require the proportional change in price of

recycled goodprj . Comparing the �rst-order conditions from the cost-minimization and pro�t-maximization

problems of the recycling sector shows thatprj = � j , which is solved implicitly using Equation (13). I use

this relationship to measure the proportional change inprj .
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To measure the disposal intensity,� sj , I require data on recycling rates for high-value

and low-value waste. I obtain the recycling rate data for mixed waste for the countries in

my sample from Kaza et al. (2018), predominantly from the 2012-2017 time period. I �nd

that the recycling rate, in percentage terms, is positively correlated with the log of income,

with a slope coe�cient of 3.26 (s.e. = 1.04). Thus, a 1% increase in GDP is associated with

a 0.03 percentage point (p.p.) increase in the recycling rate, suggesting that higher-income

countries are better at recycling waste in the domestic economy.

To infer the recycling rates by type of waste, I supplement the overall recycling rate

data with recycling rates for di�erent materials in the U.S. for 2015 from United States

Environmental Protection Agency (2020). Speci�cally, I use data on recycling rates for

\Paper and Paperboard", \Ferrous Metals", \Aluminum", \Non-ferrous metals", \Plastics",

\Lead-Acid Batteries", \Rubber and Leather", \Textiles", and \Wood". I assign each of

these categories to either high-value waste or low-value waste by matching the classi�cation

in trade data.17 Finally, to obtain an estimate of the recycling rates for the two types of

waste in the U.S., I calculate the imports-value weighted average of recycling rates for the

materials in each type. Following this procedure, I calculate the average recycling rates for

high-value waste and low-value waste to be 52.56% and 33.17%, respectively.18 The higher

recycling rate for high-value waste is consistent with the argument that recycling high-value

waste likely results in greater value-added to the economy than recycling low-value waste.

Lastly, for other countries in my sample, I extrapolate the recycling rates by type of waste to

be proportional to the overall recycling rates.19 Figure 5 shows the distribution of recycling

rates for both types of waste in my sample.

3.6 Calibration of the Externality Parameter

To quantify the externality costs from waste disposal, I calibrate the parameter� sj , which

represents the social marginal cost of disposal of waste types. I rely on the existing estimates

of external costs of waste from Bond et al. (2020) and McKinsey (2016) to measure� sj .

Bond et al. (2020) quantify the external costs from plastic waste to be $1000/tonne from four

aspects, namely, carbon dioxide emissions, air pollution, collection and sorting costs, and

17For example, \Textiles" maps to Yarn. Due to the lack of break-up of recycling rates for di�erent metals,

I assign the entire \Non-Ferrous Metals" category to high-value waste since 75% of these metals are part of

high-value waste in trade data. Similarly, even though rubber is low-value and leather is high-value waste in

trade data, I assign the entire category of \Rubber and Leather" to high-value waste.
18The average recycling rates for high- and low-value waste are robust to assigning \Rubber and Leather"

to low-value waste instead|53.4% and 31.8%, respectively.
19I convert all rates to a scale of [0; 1 ) using the transformation x

100� x before calculating the proportional

rates for the two types of waste. In this way, the extrapolated rates asymptote above at 100.
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ocean clean-up costs.20 21 This estimate is same as the European Union tax of $1000/tonne

on non-recycled plastic waste that is levied on member countries starting on January 1, 2021.

Even though plastic waste comprises only 10% of the low-value waste in my sample, it is

rampant in all activities of an economy. Thus, I use this estimate as the value the European

Union places on disposal of mixed-waste. The McKinsey (2016) study calculates the external

costs from mixed waste for �ve Southeast Asian countries to be $375/tonne.22

To calibrate the parameter� sj 8s, I write the indirect utility function in Equation (3) in

money-metric terms,ej (v; P;f Wsgs= h;l ) = Vn � Pn � (1 +
P

s W 2
sj ). Then, I di�erentiate the

money-metric utility function with respect to the volume of waste disposed,� s � � s �
P

i X sij ,

and choose the value of� sj so that the marginal cost of disposed waste equals the economic

valuation of the externality provided in the aforementioned studies. Speci�cally, I choose

� sj so that one additional tonne of disposed waste,s, decreases the money-metric utility of

country j by a dollar-value proportional to its EPI.23 Thus, the parameter� sj is isomorphic

to the social marginal cost of disposal of waste types in country j . While the disposal

intensity is larger for high-value waste than for low-value waste, which is decreasing in the

income level of a country, the externality cost per unit of waste is increasing in income level.

Figure 6 shows the social marginal cost of waste in dollars per tonne. Rich countries, mainly

in the European and North American regions, have the highest social marginal costs of waste

disposal, while lower-income countries such as India and China have the lowest social marginal

costs of waste disposal. I also present the corresponding calibrated externality parameters

for high- and low-value waste in Figures A.4 and A.5, respectively.

20A potential concern is that the $1000/tonne partially captures external costs at the global rather than

domestic level due to the carbon dioxide emissions from waste disposal. However, of the $1000/tonne estimate,

carbon dioxide emissions account for a share of only 37.5%. I �nd that my welfare estimates are robust to

reducing the external cost for the European Union by this amount (See Section 5.5.
21Bond et al. (2020) include the collection and sorting costs in the external costs of plastics waste because

much of the plastic waste stream is not collected and sorted. Thus, they assume the collection and sorting

to be a part of unaccounted externality from disposal.
22The �ve Southeast Asian countries are China, Indonesia, the Philippines, Thailand, and Vietnam.
23I solve the following two equations in two unknowns:

log(917) = � 0 + � 1EPI EU ;

log(370) = � 0 + � 1EPI SEA ;

where EP I EU and EP I SEA are the average environmental performance indices for the EU and the relevant

Southeast Asian (SEA) countries. Here, I use the in
ation-adjusted estimates of the social marginal cost of

waste disposal, $ 917/tonne and $370/tonne. I use the values of� 0 and � 1 to extrapolate economic valuation

for the countries in my sample.
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4 Estimation

In this section, I �rst present the estimation methodology and the results for trade elas-

ticities in Section 4.1, followed by the estimation strategy for the other parameters in Section

4.2, and the �t between simulated 
ows and trade 
ows in the data in Section 4.3.

4.1 Trade Elasticities

The gravity equation (12) for sectors relates bilateral trade with aggregate e�ciency and

input costs in the exporting country, prices and total expenditure on sectors in the importing

country, and the trade barrier between the two. After rearrangement and log-linearization, I

write the equation as:24

ln
X sij

X sj
= Si � Sj � � s ln � sij ; (16)

whereSi � ln Ti � � s ln wi is the measure of exporting countryi 's technology discounted by

input costs. The term Sj � ln � sj is a measure of importing countryj 's prices.

To estimate the elasticities of trade 
ows with respect to trade barriers, one must dis-

entangle trade costs from these trade elasticities. To do so, I use price data to construct a

measure of trade barriers as in Eaton and Kortum (2002). The domestic price of any good,

� , must be bounded above by the price at which a consumer can buy the good from an-

other country i . Thus, for the producer of� in country j to stay competitive, the following

no-arbitrage condition must hold:

pj (� ) � � ij pi (� ):

Thus, the maximum relative price must also satisfy the above inequality:

max
�

pj (� )
pi (� )

� � ij :

To compute the measure of trade barriers, I use basic-heading-level price data from the

2017 cycle of the International Comparison Program (ICP). A basic-heading represents a

group of similar and well-de�ned goods for which expenditure data in the participating

economies are available (World Bank, 2020). Of the 155 basic-headings in the ICP data,

I keep price data on 66 tradable commodities (Simonovska and Waugh, 2014). Table A.4

lists the 66 basic-headings. The data from 2017 are temporally the closest to the trade data in

24Note that Eaton and Kortum (2002) estimate the equation X ij =X j

X ii =X i
=

�
P i � ij

P j

� � �
using a proxy for

�
P i � in

P j

�

that is constructed using price data. This version of the gravity equation, however, requires imputed gross

manufacturing production data to construct the dependent variable (Simonovska and Waugh (2014)). In

contrast, I estimate Equation (12) using GDP data as a proxy for X sj and with country-speci�c e�ects.
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my sample.25 Thus, I exploit the disaggregated price data to obtain an approximate measure

of trade barriers as follows:

ln �̂ 1
ij = max

�
f ln(pj (� )) � ln(pi (� ))g: (17)

where the superscript denotes the �rst-order statistic. To estimate the trade elasticities across

the three sectorss 2 f m; h; lg, I estimate Equation (16) with exporter and importer �xed-

e�ects, Si and Sj . Assuming that the trade costs vary by a �xed proportion among the three

sectors irrespective of the country pair, the �xed e�ects would also absorb the unobservable

heterogeneity by sector. The trade barrier measure su�ers from measurement error due to

the approximation and errors in the price data itself (Simonovska and Waugh, 2014). To

address this, I perform a two-stage least squares (2SLS) estimation of Equation (16) with the

geographic barrier variable, distance, as an instrument for ^� ij .

Since multiple methods to perform this estimation exist in the literature, some discussion

is in order. The 2SLS procedure is used to alleviate an errors-in-variables issue when the

measurement error is classical, i.e., mean zero (Simonovska and Waugh, 2014). However,

Simonovska and Waugh (2014) show that Eaton and Kortum's measure of trade barriers,

constructed using �nite sample of prices, alwaysunderestimatesthe true trade costs. To

address this issue, I modify the trade cost measure to the sum of �rst-order statistic with the

di�erence between �rst- and second-order statistics, 2^� 1 � �̂ 2. Robson and Whitlock (1964)

show that this modi�ed measure is as e�cient as ^� 1 but with less bias. Although the Robson

and Whitlock (1964) approach is not based on explicit distributional assumptions like the

simulated method of moments (SMM) approach suggested by Simonovska and Waugh (2014),

I prefer this approach due to its computational simplicity.

4.1.1 Results

Table 4 reports the trade elasticity estimates in the three sectors: manufactured goods,

high-value waste, and low-value waste. I �nd that the OLS estimates with origin- and

destination-level e�ects have the expected negative sign and increase in magnitude when

moving from manufacturing to low-value waste sector, consistent with the pattern in Ta-

bles 2 and A.2. However, the measurement error in the trade barrier variable can lead to

attenuation bias in the OLS estimates. In support of this interpretation, I �nd that the

negative 2SLS estimates are larger in magnitude, in the range of 7.260 to 9.831. As before,

25The 2017 cycle is the latest in the ICP and thus follows an updated methodology that provides more

reliable data than the previous cycles. Two additional advantages of using the ICP price data are: �rst,

the sampled goods in the data set span all categories of the GDP, re
ecting a wide number of industries

(Simonovska and Waugh, 2014), and second, the dataset extensively covers 216 economies, which is favorable

to my country-level international trade framework.
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the size of the estimates increases from manufactured goods to low-value waste. This �nding

implies that a 1% decrease in trade costs causes a 7.26% increase in manufacturing, a 7.29%

increase in high-value waste, and a 9.83% increase in low-value waste 
ows. Since most coun-

tries accrue lesser bene�ts from importing low-value waste than from importing high-value

waste or manufactured goods, the low-value waste 
ows are the most sensitive to trade costs.

The size of the gains from international trade depends inversely on the size of these trade

elasticity estimates. For comparison, I also estimate the trade elasticities using ^� 2 and �̂ 1

as measures of trade barrier. In Table A.5, I use ^� 2 as the measure of trade barriers, as in

Eaton and Kortum (2002). My 2SLS estimate 14.59 (s.e. = 0.65) for manufactured goods is

close to Eaton and Kortum's estimate of 12.86 (s.e. = 1.64). However, consistent with the

argument in Simonovska and Waugh (2014), the di�erence in estimates between Tables A.5

and A.6 re
ects the downward bias in the trade barrier measure leading to upward biases in

trade elasticity estimates. Thus, to estimate the other model parameters, I prefer the 2SLS

estimates in Table 4. Additionally, the 2SLS estimate for manufactured goods in Table 4 is

close to the median estimate of 8.28 in Eaton and Kortum (2002).

4.2 Price of Recycled Good, Technology, and Trade Costs

Equations (9) to (12) specify the value of trade 
ows from countryi to country n in sector

s:

X sij =
Ti (wi � sij )� � s

� sj
X sj ; s 2 f m; h; lg;

X mj = �w j
�L j ;

X sj = � � s
j � sP1� � s

sj ; s 2 f h; lg;

Psj =

2

4 �

0

@� s + 1 � � s

� s

1

A

3

5

1
1� � s

� �
� 1

� s
sj ;

� sj =
X

i

Ti (wj � sij )� � s ; (18)

where
P

s2f h;l g � 1=� s
s = 1, the shadow prices of recycled good� j are solved implicitly using

Equation (13), and the technology parameters,Tj , are solved using Equation (14). The trade


ows for the N countries are a function of wages,f wi gN
i =1 , population, f �L i gN

i =1 , technology

parameters,f Ti gN
i =1 , the shadow price of recycled goods,f � i gN

i =1 , trade barriers between all

exportersi and importersj , f � sij gs= f m;h;l g, the parametersf � sgs= f m;h;l g controlling the spread

of the distribution of technologies in the three sectors, the parametersf � sgs= f h;l g controlling

the elasticity of demand for the two types of waste, and the weight of high-value waste in
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recycling sector production,� h.

My sample comprises data on 91 countries. Trade among countries within my sample

accounts for 91% of world trade in manufactured goods, 95% of world trade in high-value

waste, and 96% of world trade in low-value waste. To perform the estimation, I set� = 0:993,

the share of manufacturing trade in total trade in my sample, and� 1=� h
h = 0:456, the share

of high-value waste trade in total waste trade in my sample. I set� m = 3, � h = 2:5, and

� l = 2 to meet the condition for �nite solution � s < � s + 1 and the condition � h > � l that

governs the fraction of expenditure allocated to the two kinds of waste in a country based

on its income level. For simplicity, the parameter� that governs the share of expenditure

on inputs, labor and waste, by the manufacturing sector is set at 0.98 for all countries. This

�gure is one minus the share of expenditure on waste-management in overall income from

manufacturing for the U.S. economy (Simmons, 2016).

Stage I: Price of Recycled Good. To estimate the shadow price of the recycled

good, � j , I use the zero-pro�t condition for the recycling sector combined with the market-

clearing condition for the recycled good:
P

s= f h;l g X sj = (1 � � )wj
�L j . Given the parameters

f �; � h; � m ; � h; � l ; � h; � lg, data on wagesf wj gj , and population f �L j gj , for each guess of tech-

nology parametersf Tj gj , I use theN equations in Equation (13) to solve for theN unknowns

� j . Solving for the Lagrange multipliers in this way reduces the number of parameters to be

estimated by 91.

Stage II: Technology. Given the parametersf �; � h; �; � m ; � h; � l ; � h; � lg, data on wages

f wj gj and populationf �L j gj and substituting the implicit solution for the Lagrange multipliers

f � j gj , Equation (14) describesN labor market-clearing conditions inN unknowns. For each

guess of the trade costsf � sij g, I simulate the whole economy to generate trade 
ows until I �nd

the technology parametersf Tj gj that satisfy the market-clearing conditions in Equation (14).

Solving for the technology parameters in this way further reduces the number of parameters

to be estimated by 91.26

Stage III: Trade Costs. Substituting implicit solutions of f Ti gN
i =1 and f � j gN

j =1 into

Equation (18) , which describes trade 
ows in the three sectors, I obtain the stochastic form

of trade 
ow equations as:

X sij = h(w; L; �; �; � h; � m ; � h; � l ; � h; � l ; f � mij gN
i;n =1 ; f � hij gN

i;n =1 ; f � lij gN
i;n =1 ) + � s (19)

where� s is the error term. Under the restriction that the trade costs� sij � 1 and� sjj = 1 8s, I

26Alvarez and Lucas (2007) prove the existence and uniqueness of an equilibrium for the model in Eaton and

Kortum (2002). Further, Fieler (2011) argues that her model satis�es the conditions for existence and shows,

through Monte Carlo simulations, that the parameters are well identi�ed. The existence and uniqueness in

Fieler's case suggests that the equilibrium for my model, which is an extension of her model, also exists and

is unique.
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solveN (N � 1) trade 
ow equations numerically to obtainN (N � 1) trade costs,f � sij gN
i;j =1 ;i 6= j ,

for each sectors = f m; h; lg. This procedure allows me to infer trade costs so that the trade


ows �t almost perfectly. 27

Similar to Fieler (2011), I simulate the whole economy to account for endogenous variables,

including wages, and zero trade 
ows. However, in her case, she �rst assumes that trade costs

are a deterministic function of observables such as distance, contiguity, common language,

and trade agreement, and then estimates the corresponding parameters using non-linear least

squares (NLLS). Not only is my approach analytically straightforward, but it also avoids

solving an NLLS optimization problem using the polytope method, which runs into the issue

of convergence to a local rather than global minima in multivariate cases (Judd, 1998).

A drawback of my approach, however, is that I cannot separately identify bilateral trade

costs from heterogeneity at the country level (Costinot and Rodr��guez-Clare, 2014), such

as country-speci�c preferences towards di�erent commodities. To verify that the trade cost

estimates capture actual trade barriers at least to some degree, I check the extent to which

rudimentary trade cost variables|the observable geographic barriers|explain the variation

in these trade costs in the next section. Further, my estimation approach does not account

for structural errors in trade costs that can a�ect trade 
ows via changes in technology

parameters. However, Fieler (2011) demonstrates that the e�ects of these structural errors

are small, as introducing large multiplicative shocks to trade costs leads to only small changes

in equilibrium wages.

4.3 Goodness of Fit

In this section, I assess the goodness of �t of the model by comparing trade 
ows predicted

by the model to the actual trade 
ows in data and checking whether the predicted 
ows align

with facts in the data. Figure 7 plots the simulated trade 
ows at the estimated parameter

values against the actual 
ows. Although I do not obtain a perfect �t between actual and

simulated 
ows, the R2 values are high: 92.02%, 93.27%, and 67.33% for manufactured goods,

high-value waste, and low-value waste, respectively.28 Thus, at �rst glance, the model �ts

the data well.

As a sanity check, I evaluate whether the observable trade barriers explain the variation

27I do not obtain a perfect �t because for each guess of trade costs, I �rst solve for the technology

parameters and the Lagrange multipliers in Stages I & II. Although the trade costs are allowed to vary by

sector, only one set of technology parameters and Lagrange multipliers solve the market-clearing conditions,

leading to a trade-o� in choosing trade costs for the three sectors. Further, I solve for the trade costs under

the restriction, � sij � 1.
28I experiment with di�erent values of � h and � l satisfying � s < � s + 1 and � h > � l and �nd that the

predicted 
ows and the R2 do not change. However, estimating the trade costs under the reverse condition,

� l > � h , worsens the model �t. Speci�cally, the R2 are lower by at least 13%.
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in the inferred trade costs from Stage III. To do so, I estimate the following equations:

log(�̂ sij ) = 
 1 + 
 2Distance ij + 
 3Distance2
ij + � D ij + " sij ; s 2 f m; h; lg (20)

where ^� sij are the inferred trade costs from Stage III, andD ij is a vector that includes bi-

lateral dummy variables. The dummies for manufactured goods include contiguity, common

language, and free trade agreement. For high- and low-value waste, I only include the dum-

mies for contiguity and common language. Table 5 shows that the�R2 for the three sectors is in

the range of 4.3-9.4%. Even though theR2 are relatively low because I exclude country- and

sector-speci�c trade barriers for this sanity check, they suggest that the estimated trade costs

capture variation due to geographic barriers. In addition, since the coe�cient onDistance

is positive and signi�cant while the coe�cient on Distance2 is negative and signi�cant, the

estimated trade costs are a concave function of distance. Thus, the positive marginal e�ect of

distance on trade costs is decreasing with distance. The signs on the rest of the dummies|

contiguity, common language, and free trade agreement|are consistent with the stylized

facts obtained from the raw data.

Figure 8 shows that the residuals are larger for higher-income countries. Table 6 shows

that{as a percentage of GDP, trade among the 30 richest countries in the sample is 12.558% for

the manufacturing sector, 0.048% for high-value waste, and 0.047% for low-value waste. The

model closely predicts these shares to be 12.396%, 0.050%, and 0.040%, respectively. Unlike

the Eaton and Kortum (2002) model, which underestimates trade 
ows in general, the model

captures trade among rich countries well. Consistent with Fieler (2011), this �nding is robust

to the choice of weights, as the dependent variableX ij in Stage III places higher weights on

larger countries.29 Thus, even though the residuals are higher for larger countries, the model

adequately captures trade among them. Further, the fact that the model underpredicts low-

value waste trade for the rich, who trade relatively less in this sector explains the �nding that

the R2 for this sector in Figure 7 is lower than that for the other two.

The model's prediction for trade among the rest of the countries is also close|5.513%,

0.011%, and 0.023% against 6.137%, 0.011%, and 0.022% in the data. Thus, the model

captures the empirical fact that rich countries trade more in all three sectors than lower-

income countries. Additionally, it accounts for the fact that the rich trade more in high-value

waste than low-value waste, while the lower-income countries trade more in low-value waste

than high-value waste.

Figure 9 illustrates the choice between the two types of waste. The data show an increasing

and statistically signi�cant relationship between the share of imports of high-value waste in

29Silva and Tenreyro (2006) argue that the choice of weights depends on the pattern of heteroscedasticity

and is thus an empirical question. Even though the observations for larger countries have more information,

they are also noisier, while the observations for smaller countries are prone to measurement error.
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total waste and income, and the model correctly predicts this relationship. Panel A in Table 7

shows that the model also captures the increasing relationship between the sector-speci�c

share of total trade in GDP, which I henceforth refer to as \openness" for that sector, and

income per capita. While the data show a positive and statistically signi�cant relationship

between openness and income per capita for the manufacturing and high-value waste sectors,

the model captures the positive relationship across all three sectors, which is not statistically

signi�cant in any sector.

Panel B in Table 7 replaces income per capita with total income in the regressions. In

the data, the slopes of the regression lines are negative for all three sectors and statistically

insigni�cant for two. Similarly, the slopes are negative according to the model. The size of a

country presents two opposing forces. On the one hand, trade is a small fraction of a large

country's total income. On the other hand, higher-income countries trade more because they

have higher incomes per capita. Thus, middle-income countries tend to have larger variability

in trade shares (Fieler, 2011), which is also a fact that the model captures well.

5 Counterfactuals

In this section, I analyze a set of counterfactuals. Since the counterfactuals related to

waste trade policies are novel exercises, I �rst present the results from the standard autarky

counterfactual as a benchmark in Section 5.1. Then, I present the results from the waste-

autarky counterfactual in which all waste trade is shut down in Section 5.2. In Section 5.3, I

present results from China's ban on certain categories of waste imports, and in Section 5.4,

I discuss the welfare implications of the Basel Ban amendment that bans all exports of

hazardous waste from developed to developing countries.

For each policy change, I change the relevant set of trade costs and solve the market-

clearing conditions (13) and (14) for the new equilibrium recycled good prices and wages.

Then, I substitute the indirect utility at the new equilibrium along with that at the old

equilibrium into Equation (15) to calculate the e�ect of the policy change. When calculating

the externality costs at the new equilibrium using Equation (2), only the organization of trade,
P

i X sij , changes while the disposal intensity,� sj , remains constant.30 Thus, the technique

of disposal remains unchanged, but thecomposition of waste changes as buyers change the

volumes and varieties of waste types to buy from di�erent countries.

30One can endogenize disposal intensity to change with trade policies to capture second-order e�ects on

externality costs. With trade, countries could become more e�cient at recycling, leading to less disposal

and lower environmental costs. However, in this paper, I focus on the primary e�ects of trade policies from

changes in the overall volume and composition of waste generation.
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5.1 Autarky

In the autarky counterfactual, trade in all commodities|manufactured goods, high-value

waste, and low-value waste|is shut down, i.e.,� sin ! 1 8 i 6= n 8s 2 f m; h; lg. Prohibiting

all trade is an extreme measure to tackle the issue of international trade in waste. However,

since the counterfactuals related to waste trade policies are novel exercises, it is imperative

to measure gains to waste trade relative to gains to overall trade. The autarky counterfactual

provides welfare implications from not only shutting down all trade but also from changes in

overall volumes of production in every sector that ensue from this policy change. Thus, trade

in manufactured goods, which account for considerable generation of waste, has the potential

to adversely a�ect local environments in countries via changes in the scale of production.

Panel A in Table 8 presents the gross bene�ts and environmental costs of shutting down

all trade. The rich countries have the largest gains to trade of 3.25% of GDP. Countries, such

as Belgium and Singapore, that are relatively open to trade have among the highest bene�ts,

while countries that are relatively closed to trade, such as the United States, have among

the lowest bene�ts to trade (See Table A.7). A host of modeling assumptions on the supply-

side|market structure, �rm-level heterogeneity, one sector, multiple sectors, intermediate

goods, and multiple factors of production|and the demand side|CES utility|play a role

in explaining the modest size of these bene�ts (Costinot and Rodr��guez-Clare, 2014). Being

an extension of the work-horse Eaton and Kortum (2002) framework, the size of the gains to

trade from my model is consistent with their estimates.

On the environmental costs side, middle-income countries disproportionately bear exter-

nality costs due to trade of 0.49% of GDP. This �nding re
ects that middle-income countries

spend a higher fraction of their GDP on disposal-intensive low-value waste. Although poor

countries also allocate greater fractions of their GDP to low-value waste, middle-income coun-

tries have higher social marginal costs of waste disposal than those countries. At the country

level, I �nd that although most countries incur larger environmental costs from opening up to

trade, some smaller-sized countries, such as the Seychelles and Moldova, incur smaller costs

too. Such smaller economies have limited domestic capacity to recycle and thus rely primarily

on exports to deal with waste. Since waste trade accounts for only 0.07% of overall inter-

national trade in commodities, the small environmental costs due to waste, approximately

0.13% of gross bene�ts, are unsurprising.

5.2 Waste-Autarky

In the waste-autarky counterfactual, trade in both high-value and low-value waste is shut

down, i.e., � sin ! 1 8 i 6= n 8s 2 f h; lg. On the one hand, in the autarky counterfactual,

access to technology from the rest of the world declines, leading to a fall in labor e�ciency and
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wages. On the other hand, in the waste-autarky counterfactual, wages rise due to substitution

away from waste inputs and toward labor in the manufacturing sector. This counterfactual

provides the e�ect of shutting down trade in waste and the changes in production volumes

in all sectors that result from this policy change.

Panel B in Table 8 reports the gross bene�ts and environmental costs of prohibiting trade

in waste. Column 2 shows that the global gains to trade in waste are 0.013% of GDP, which is

0.43% of the global gains to overall trade.31 Di�erentiating by income group, I �nd that poor

countries disproportionately bene�t from trade in waste, at 0.021% of GDP. In addition, the

volume of high-value waste rises by 12.25%, while the volume of low-value waste declines by

0.73%. Equation (11) shows that the changes in the prices of the two inputs to recycling, i.e.,

high- and low-value waste, relative to the price of recycled output are su�cient to explain the

changes in overall volumes of waste generation. Thus, a rise in the price of low-value waste

and a fall in the price of high-value waste relative to the price of recycling output explain the

volume changes. Since low-income countries specialize in low-value waste, the relative price

increase for this input bene�ts them the most.

Columns 4-5 show that allowing waste trade decreases the environmental costs for all

country groups, with poor countries experiencing the largest decrease. Poor countries allocate

a larger share of their income to disposal-intensive low-value waste, whose overall generation

volume is declining. Thus, all country groups are better o� with waste trade even after

accounting for its environmental costs. I �nd that high-value waste trade creates welfare

e�ects that are qualitatively similar to the overall waste trade. However, rich countries,

which specialize in high-value waste exports and disproportionately use it as an input in their

recycling, gain the most|0.012% of GDP|and incur the largest decline in environmental

costs|0.037% of GDP|due to high-value waste trade (Panel C in Table 8). In contrast,

with low-value waste trade, the direction of changes in the volume of generation of the two

types of waste 
ips; high-value waste generation decreases while low-value waste generation

increases. Thus, even though trade in low-value waste makes the middle-income group worse

o�, it still makes the rich and low-income countries better o� (Panel D in Table 8).

I also report country-level estimates of the gross bene�ts and costs of imposing waste-

autarky in Table A.8. On the bene�ts side, countries more open to trade in waste, such as

Belgium and Vietnam, experience the largest gains to waste trade, while countries relatively

closed to waste trade, such as the United States and Brazil, experience the lowest bene�ts.

Some countries, such as the Seychelles and Zambia, experience negative gains and positive

externality costs to waste trade. Such countries that are reliant on exports to deal with waste

increase the volume of generation of both waste types as more options become available with

allowing waste trade. In addition, the price of recycled good increases relative to wages,

31The size of these gains is also commensurate with increasing trade costs in all sectors by 0.081%.
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leading to a decrease in their real incomes.

Lastly, I �nd that shutting down trade in waste reorganizes manufacturing production

across countries. Rich countries see a fall in production volumes by 0.002% while middle

and poor countries see a rise of 0.003% and 0.0003%, respectively. Rich countries are major

producers and exporters of high-value waste input to manufacturing. Thus, as the overall

volumes of this major input fall, manufacturing production by rich countries is also adversely

a�ected.

5.3 China Ban

In 2018, China imposed an import ban on 24 categories of waste that included types of

plastics, paper, and yarn. Over the next two years, it expanded the banned categories to

include scrap metal, old ships, slag, stainless steel, and timber (You, 2018). Since the banned

categories have substantial overlap with low-value waste in my sample, I shut down imports of

low-value waste by China, which is a major importer of this type of waste to study the e�ects

of the ban. Table A.9 shows that the policy helps China on both fronts, with an increase

in gross bene�ts and a decrease in environmental costs, while also helping other low-income

countries, such as India and the Philippines, in the same manner.

Panel E in Table 8 presents the impacts on gross bene�ts and environmental costs aggre-

gated by income level. Column 2 shows that rich countries lose 0.002% of GDP, while poor

countries gain 0.002% of GDP as a result of the ban. Since poor countries are major buyers

of low-value waste, they experience positive bene�ts from this policy change, explained by

the decrease in price of low-value waste relative to wages. I also �nd that the overall volume

of high-value waste increases by 0.46%, while that of low-value waste decreases by 0.11%,

qualitatively similar to low-value waste autarky. Since middle-income and poor countries al-

locate a greater fraction of their income to low-value waste than to high-value waste, their

environmental costs also decrease. In contrast, the rich allocate a greater share to high-value

waste, so their environmental costs increase. Thus, in terms of net bene�ts, the rich are worse

o�, while the middle- and poor-income countries are better o�.

Finally, the Chinese ban also reorganizes the production of manufactured goods globally

in accordance with the generation volume changes in the two types of waste. While rich

and the poor countries see a decrease of 0.001% in manufacturing production, middle income

countries see a rise of 0.002%.

5.4 Ban Amendment

The Ban amendment to the Basel Convention, which came into force in 2019, is an agree-

ment among parties to the Convention to prohibit exports of all hazardous waste from the
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Organization of Economic Cooperation and Development (OECD), the EU, and Liechten-

stein to other countries that primarily include developing countries (Basel Action Network

and International Pollutants Elimination Network, 2019). According to the amendment, An-

nex VII countries that have rati�ed the amendment are prohibited from exporting hazardous

waste to any Non-Annex VII country, regardless of whether they rati�ed the amendment or

not. Similarly, the Non-Annex VII countries that have rati�ed the amendment are prohibited

from accepting imports of hazardous waste from any Annex VII country. The amendment

also bans trade in non-hazardous waste that is contaminated with hazardous substances and

defers to country de�nitions of hazardous waste in several cases. Since all waste can, ar-

guably, have some degree of hazardous content (Kellenberg and Levinson, 2014), I impose

the Ban amendment by shutting all waste exports from Annex VII countries that rati�ed

the amendment to all Non-Annex VII countries and all waste imports of Non-Annex VII

countries that rati�ed the amendment from all Annex VII countries. Table A.10 lists the

36 Annex VII countries, of which 29 rati�ed the amendment, and the 52 Non-Annex VII

countries, of which 29 rati�ed the amendment within the sample.

Panel F in Table 8 reports the gross bene�ts and environmental costs of the Ban amend-

ment. I �nd that the results are qualitatively similar to the waste-autarky counterfactual,

albeit the magnitudes are lower. The welfare e�ects of imposing the Ban amendment are 22-

23% of the e�ects of imposing an overall waste trade ban. Surprisingly, my estimates reveal

that this policy that is meant to favor the developing countries that rati�ed the amendment

is most harmful to them, similar to an overall waste trade ban, which is also most harmful

to poor and developing countries.

5.5 Robustness Checks

I test the robustness of my welfare estimates to a variety of alternatives, including the

functional form of the externality, estimates of the social marginal cost of waste disposal, and

estimates of the trade elasticities. In all cases, my main results continue to hold: existing

patterns of waste trade make countries of all income levels better o�, but low-value waste

trade makes middle-income countries worse o�. In addition, the China ban makes lower-

income countries, including China, better-o�.

First, I test the robustness of my environmental cost estimates to a new nested CES

formulation of the utility across the Cobb-Douglas composite of manufactured goods and

recycled product and the volume of waste disposed domestically. The indirect utility is as

follows:32

32To measure the e�ect of a policy change, I calculate the empirical analogues of the equivalent variation:

EVj = wj �L j � [f (Ŷj =P̂j ) � � ((
P

s W 0
sj ) � � (

P
s Wsj ) � )=(� � (1 � � )1� � � Yj =Pj ) � g1=� � 1]:
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whereWsj = � s � � sj �
P

i X sij is the volume of waste disposed, the parameter� = ( � � 1)=� is

the substitution parameter, and� is the weight on externality. I calibrate the two parameters,

� and � , using estimates of social marginal cost of waste disposal for the EU and Southeast

Asia, $1000/tonne and $375/tonne, respectively. Speci�cally, I solve for� and � such that

the willingness-to-pay for a EU country to avoid one additional tonne of waste disposal is

$1000, and that for a SEA country is $375. Panel A in Table A.12 shows the externality cost

estimates by income group under each counterfactual. I �nd that with these environmental

cost estimates, which are smaller than those obtained using the baseline functional form, the

qualitative conclusions still hold. My estimate of� = 0:1225 translates to an elasticity of

substitution, � > 1. Since the substitution across goods and the externality is more sensitive

to price changes than in the baseline formulation, the environmental costs are lower. The

robustness of the estimates suggests that rather than the functional form of the externality,

the social marginal cost of disposed waste and the general equilibrium changes from a policy

drive the results.

Another potential concern in the calculation of externality costs is the choice of estimates

for the social marginal cost of disposed waste. In particular, the costs from carbon dioxide

emissions from waste disposal are borne by the world as a whole. Therefore, the estimate

of $1000/tonne from Bond et al. (2020) partially accounts for external e�ects at the global

rather than domestic level. Of the $1000/tonne estimate, carbon dioxide emissions account

for a share of only 37.5%. I check the robustness of my welfare estimates to reducing the social

marginal cost for the European Union to $625. Panel B shows that the external costs for

poor countries increase by 16-32%, while for rich and middle-income countries they decrease

by 6-36% across counterfactuals. The decrease in the variance of social marginal cost from

320.52 to 134.50, which drives this change, also rea�rms the main conclusions of the paper.

I also assess the robustness of my results to alternative trade elasticity estimates. Specif-

ically, Simonovska and Waugh (2014) show that the true trade elasticity estimates for man-

ufactured goods are roughly half of the estimates using Eaton and Kortum's 2SLS approach.

Commensurate with their �nding, I set the trade elasticities � m = 4:85, � h = 4:95, and

� l = 6:58, which are half of the 2SLS estimates in Table A.6. Table A.13 shows the wel-

fare estimates across counterfactuals. As the variability in labor e�ciencies increases, i.e.,

the size of the trade elasticity estimates decreases, the size of welfare gains increases across

all counterfactuals (Simonovska and Waugh, 2014; Shapiro, 2016). However, the qualitative

conclusions of the paper are robust to these changes.

Finally, I also use the model to calibrate social marginal costs of waste disposal for use
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in the counterfactual calculations, as explained in Appendix A. In this case, I �nd that

countries have larger willingness-to-pay to avoid one additional tonne of low-value waste

from being disposed than calculated in the existing literature. Consequently, even though

existing patterns of waste trade still make all income groups better o�, low-value waste trade

makes them worse o�. The China ban still makes richer countries worse o� while the poorer

countries, including China, are better o�. Overall, the conclusion that low-value waste is the

worse of the two types of waste to trade passes muster with the enlarged social marginal costs

that I infer from the model.

6 Conclusion

I quantify the welfare implications of international trade in waste. To this end, I build

a structural gravity model with the generation of waste micro-founded as a by-product of

manufacturing. To assess heterogeneity in welfare by type of waste, I decompose waste 
ows

into low- and high-value waste and estimate separate trade elasticities for both types along

with for manufactured goods. This setup also allows the externality costs, which depend on

the ease of recycling di�erent materials, to vary by type of waste. The key �nding through

counterfactual simulations is that existing patterns of waste trade make all countries better

o�. However, the low-value waste trade makes middle-income countries worse o�.

The non-recyclable portion of waste imports by countries inevitably generates a nega-

tive externality that is not accounted for by private players while making trading decisions.

Hence, one would expect that restricting international trade in waste would reduce exter-

nality costs due to waste disposal. In contrast, my results demonstrate that accounting for

general equilibrium changes in the scale and composition of waste generation that ensue from

this policy change can increase the environmental costs across countries. Combined with a

decrease in gross bene�ts, the increase in environmental costs makes all countries worse o�.

However, shutting down the low-value waste trade makes middle-income countries, which are

major importers of this waste type, better o�. Depending on the type of waste that countries

specialize in, their manufacturing production is also adversely a�ected.

Thus, my analysis can inform policy decisions on the type of waste to target while regu-

lating trade 
ows. Kaza et al. (2018) asserts that global waste generation will grow by 69%

by 2050, with most of the increase coming from lower-income countries whose incomes are

rising. These countries have much higher open dumping rates that contribute to the envi-

ronmental costs from waste. This paper shows that although relocation of waste to countries

with higher recycling capacity creates gross bene�ts, it also imposes local environmental costs

on importing countries. I show that targeted regulation of waste 
ows can in
uence the scale

and composition and thus the environmental costs of waste disposal.
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7 Figures

Figure 1: Composition of High- and Low-Value Waste

This �gure shows the categories in Table A.1 that comprise two types of waste|high- and low-value waste.
High-value waste comprises categories that fall under the top tercile of value-to-weight ratios, while low-
value waste includes the rest of the categories. Metals comprise a major share in both high- and low-value
waste in my sample. However, metals part of high-value waste are mainly precious metals, Gold, Copper,
Nickel, Aluminum, Tungsten, Molybdenum, Tantalum, Magnesium, Cobalt, Bismuth, Cadmium, Titanium,
Zirconium, and Antimony. Metals part of low-value waste are mainly ferrous in nature|Steel and Iron, Lead,
Zinc, Tin, Beryllium, and Chromium. Yarn also is a part of both types of waste. As a part of high-value
waste, yarn mainly comprises precious �bers including silk, wool, and �ne animal hair, while as a part of
low-value waste it comprises coarse animal hair, cotton, and synthetic �bers.
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Figure 2: High-Value Waste Imports (as % of GDP)

High-value waste comprises categories in Table A.1 that fall under the top tercile of value-to-weight ratios.
This �gure shows the dollar-value of high-value waste imports of a country as a percentage of its GDP.
The darker the color, the larger is the country's high-value waste imports as a share of its income. White
represents missing data.

Figure 3: Low-Value Waste Imports (as % of GDP)

Low-value waste comprises categories in Table A.1 that fall under the bottom-two terciles of value-to-weight
ratios. This �gure shows the dollar-value of low-value waste imports of a country as a percentage of its GDP.
The darker the color, the larger is the country's low-value waste imports as a share of its income. White
represents missing data.
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Figure 4: Flow of Goods and Services between Sectors in a Country

This �gure shows the links between sectors in the general equilibrium model described in Section 3. Specif-
ically, the �gure depicts the 
ow of inputs, labor and two types of waste, to the production and waste-
management sectors, and the 
ow of manufactured output and recycled product to households for �nal
consumption. The black arrows represent the 
ows that can take place only domestically. The orange arrows
represent the 
ows that can take place both domestically and across borders. See Section 3 for further details.
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Figure 5: Recycling Rates by Type of Waste

This �gure shows the extrapolated recycling rates for high- and low-value waste for the 91 countries in my
sample. The \grey" dots represent the recycling rates for mixed waste from Kaza et al. (2018). The \orange"
dots represent the recycling rates for high-value waste extrapolated to be proportional to overall recycling
rates (grey dots) using the recycling rates for di�erent materials under high-value waste for the USA from
United States Environmental Protection Agency (2020). The \blue" dots are the analogous extrapolated
recycling rates for low-value waste. See Section 3.5 for details.

Figure 6: Social Marginal Cost of Waste ($/tonne)

This �gure shows the extrapolated social marginal costs of waste disposal for each country in my sample. I use
the values of $1000/tonne from Bond et al. (2020) and $375/tonne from McKinsey (2016) for the European
Union and Southeast Asia, respectively, to extrapolate the social marginal costs to the countries in my sample
based on their Enviornmental Performance Indices. Section 3.6 describes the extrapolation methodology in
detail.
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